論文の概要: MoGERNN: An Inductive Traffic Predictor for Unobserved Locations in Dynamic Sensing Networks
- arxiv url: http://arxiv.org/abs/2501.12281v1
- Date: Tue, 21 Jan 2025 16:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:16.220297
- Title: MoGERNN: An Inductive Traffic Predictor for Unobserved Locations in Dynamic Sensing Networks
- Title(参考訳): MoGERNN:動的センシングネットワークにおける未観測位置の誘導的トラフィック予測器
- Authors: Qishen Zhou, Yifan Zhang, Michail A. Makridis, Anastasios Kouvelas, Yibing Wang, Simon Hu,
- Abstract要約: MoGERNNはセンサのない地域でも正確な渋滞進化を予測でき、交通管理に有用な情報を提供する。
実世界の2つのデータセットの実験では、MoGERNNは観測された場所と観測されていない場所の両方のベースラインメソッドを一貫して上回っている。
- 参考スコア(独自算出の注目度): 15.487715528848456
- License:
- Abstract: Given a partially observed road network, how can we predict the traffic state of unobserved locations? While deep learning approaches show exceptional performance in traffic prediction, most assume sensors at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods typically require costly retraining when sensor configurations change. We propose MoGERNN, an inductive spatio-temporal graph representation model, to address these challenges. Inspired by the Mixture of Experts approach in Large Language Models, we introduce a Mixture of Graph Expert (MoGE) block to model complex spatial dependencies through multiple graph message aggregators and a sparse gating network. This block estimates initial states for unobserved locations, which are then processed by a GRU-based Encoder-Decoder that integrates a graph message aggregator to capture spatio-temporal dependencies and predict future states. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to dynamic sensing networks, maintaining competitive performance even compared to its retrained counterpart. Tests with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules.
- Abstract(参考訳): 部分的に観測された道路網を考慮すれば、観測されていない場所の交通状況をどうやって予測できるのか?
深層学習アプローチは交通予測において例外的な性能を示すが、ほとんどの場合、経済的制約のため現実的ではないあらゆる場所にあるセンサーを仮定する。
さらに、センサーの設定が変わった場合、これらの手法はコストのかかる再訓練を必要とする。
これらの課題に対処するため, インダクティブな時空間グラフ表現モデルMoGERNNを提案する。
大規模言語モデルにおけるMixture of Expertsアプローチに触発され、複数のグラフメッセージアグリゲータとスパースゲーティングネットワークを介して複雑な空間依存をモデル化するためのMixture of Graph Expert (MoGE)ブロックを導入する。
このブロックは、観測されていない場所の初期状態を推定し、GRUベースのEncoder-Decoderによって処理され、グラフメッセージアグリゲータを統合して時空間の依存関係をキャプチャし、将来の状態を予測する。
実世界の2つのデータセットの実験では、MoGERNNは観測された場所と観測されていない場所の両方のベースラインメソッドを一貫して上回っている。
MoGERNNはセンサのない地域でも正確な渋滞進化を予測でき、交通管理に有用な情報を提供する。
さらに、MoGERNNは動的センシングネットワークに適用可能であり、再トレーニングされたネットワークと比較しても競争性能を維持することができる。
利用可能なセンサーの数が異なるテストは、その一貫した優位性を確認し、アブレーション研究は、そのキーモジュールの有効性を検証する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Graph Convolutional Networks for Traffic Forecasting with Missing Values [0.5774786149181392]
時空間における複雑な欠落値を扱うことのできるグラフ畳み込みネットワークモデルを提案する。
学習した局所的特徴に基づく動的グラフ学習モジュールも提案する。
実生活データセットに対する実験結果から,提案手法の信頼性が示された。
論文 参考訳(メタデータ) (2022-12-13T08:04:38Z) - Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks [1.0965065178451106]
本研究では,空間的時間的相関とグラフ帰納バイアスに基づいて,完全に観測されていない位置の状態を予測できるフレームワークを開発した。
我々のフレームワークは、ネットワークのグラフ構造を用いて、観測された位置と周囲の相関を悪用するグラフニューラルネットワークと組み合わせることができる。
シミュレーションと実世界の両方のデータセットに対する実証的な評価は、グラフニューラルネットワークがこのタスクに適していることを示している。
論文 参考訳(メタデータ) (2022-11-21T15:52:06Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - DetectorNet: Transformer-enhanced Spatial Temporal Graph Neural Network
for Traffic Prediction [4.302265301004301]
高カバレッジの検出器は、経路計画や交通渋滞の回避において、道路利用者にとって直接的かつ遠回りの利点がある。
これらのデータを活用すると、動的時間的相関、道路条件の変化による動的空間的相関など、ユニークな課題が提示される。
本稿では,Transformer が拡張した DetectorNet を提案し,これらの課題に対処する。
論文 参考訳(メタデータ) (2021-10-19T03:47:38Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。