論文の概要: Improved Tomographic Estimates by Specialised Neural Networks
- arxiv url: http://arxiv.org/abs/2211.11655v2
- Date: Tue, 27 Jun 2023 09:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 17:44:48.947731
- Title: Improved Tomographic Estimates by Specialised Neural Networks
- Title(参考訳): 特化ニューラルネットワークによるトモグラフィ推定の改善
- Authors: Massimiliano Guarneri, Ilaria Gianani, Marco Barbieri and Andrea
Chiuri
- Abstract要約: ニューラルネットワーク(NN)は、畳み込み段階を含むことにより、パラメータのトモグラフィー推定を改善することができることを示す。
シミュレーションデータのみを用いてネットワークをトレーニングすることにより,安定かつ信頼性の高い操作が実現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterization of quantum objects, being them states, processes, or
measurements, complemented by previous knowledge about them is a valuable
approach, especially as it leads to routine procedures for real-life
components. To this end, Machine Learning algorithms have demonstrated to
successfully operate in presence of noise, especially for estimating specific
physical parameters. Here we show that a neural network (NN) can improve the
tomographic estimate of parameters by including a convolutional stage. We
applied our technique to quantum process tomography for the characterization of
several quantum channels. We demonstrate that a stable and reliable operation
is achievable by training the network only with simulated data. The obtained
results show the viability of this approach as an effective tool based on a
completely new paradigm for the employment of NNs operating on classical data
produced by quantum systems.
- Abstract(参考訳): 量子オブジェクトを状態、プロセス、測定値であるキャラクタリゼーションは、それらに関する以前の知識によって補完され、特に実際のコンポーネントのルーチン手順につながるので、貴重なアプローチである。
この目的のために、機械学習アルゴリズムはノイズの存在下で、特に特定の物理パラメータを推定するためにうまく動作することを示した。
本稿では、畳み込み段階を含むことにより、ニューラルネットワーク(NN)がパラメータのトモグラフィー推定を改善することを示す。
本手法を量子プロセストモグラフィに応用し,複数の量子チャネルの特性評価を行った。
シミュレーションデータのみを用いてネットワークをトレーニングすることにより,安定かつ信頼性の高い操作が実現可能であることを示す。
その結果,量子システムによって生成された古典データに基づくnnsの雇用における,全く新しいパラダイムに基づく効果的なツールとしての有効性が示された。
関連論文リスト
- Disentanglement process in dephasing channel with machine learning [0.0]
本稿では,2ビットシステムにおける雑音の除去を考慮した機械学習手法を提案する。
状態の分類と絡み合いに適したANNアルゴリズムは、トモグラフィー特徴のサブセットのみを用いて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-28T20:18:04Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
本稿では,一連の関連するデータセットから帰納バイアスを抽出する手法を提案する。
機能的ベイズニューラルネットワーク推論を用いて、前者をプロセスとみなし、関数空間で推論を行う。
本手法は,データ生成プロセスのスコア関数をメタラーニングすることにより,複雑な事前知識をシームレスに獲得し,表現することができる。
論文 参考訳(メタデータ) (2022-10-24T15:14:26Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Mixed State Entanglement Classification using Artificial Neural Networks [0.0]
分離型ニューラルネットワーク量子状態は、絡み合い特性が明示的にプログラム可能である量子状態のパラメータ化に、ニューラルネットワークにインスパイアされた。
我々は、SNNSを混合多部状態に拡張し、複雑に絡み合った量子系を研究するための汎用的で効率的なツールを提供する。
論文 参考訳(メタデータ) (2021-02-11T14:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。