FastFlow: AI for Fast Urban Wind Velocity Prediction
- URL: http://arxiv.org/abs/2211.12035v1
- Date: Tue, 22 Nov 2022 06:13:48 GMT
- Title: FastFlow: AI for Fast Urban Wind Velocity Prediction
- Authors: Shi Jer Low, Venugopalan, S.G. Raghavan, Harish Gopalan, Jian Cheng
Wong, Justin Yeoh, Chin Chun Ooi
- Abstract summary: We present the use of CNNs for urban layout characterization that is typically done via high-fidelity numerical simulation.
We apply this model towards a first demonstration of its utility for data-driven pedestrian-level wind velocity prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven approaches, including deep learning, have shown great promise as
surrogate models across many domains. These extend to various areas in
sustainability. An interesting direction for which data-driven methods have not
been applied much yet is in the quick quantitative evaluation of urban layouts
for planning and design. In particular, urban designs typically involve complex
trade-offs between multiple objectives, including limits on urban build-up
and/or consideration of urban heat island effect. Hence, it can be beneficial
to urban planners to have a fast surrogate model to predict urban
characteristics of a hypothetical layout, e.g. pedestrian-level wind velocity,
without having to run computationally expensive and time-consuming
high-fidelity numerical simulations. This fast surrogate can then be
potentially integrated into other design optimization frameworks, including
generative models or other gradient-based methods. Here we present the use of
CNNs for urban layout characterization that is typically done via high-fidelity
numerical simulation. We further apply this model towards a first demonstration
of its utility for data-driven pedestrian-level wind velocity prediction. The
data set in this work comprises results from high-fidelity numerical
simulations of wind velocities for a diverse set of realistic urban layouts,
based on randomized samples from a real-world, highly built-up urban city. We
then provide prediction results obtained from the trained CNN, demonstrating
test errors of under 0.1 m/s for previously unseen urban layouts. We further
illustrate how this can be useful for purposes such as rapid evaluation of
pedestrian wind velocity for a potential new layout. It is hoped that this data
set will further accelerate research in data-driven urban AI, even as our
baseline model facilitates quantitative comparison to future methods.
Related papers
- OpenCity: Open Spatio-Temporal Foundation Models for Traffic Prediction [29.514461050436932]
We introduce a novel foundation model, named OpenCity, that can effectively capture and normalize the underlying unseen-temporal patterns from diverse data characteristics.
OpenCity integrates the Transformer architecture with graph neural networks to model the complex-temporal dependencies in traffic data.
Experimental results demonstrate that OpenCity exhibits exceptional zero-shot performance.
arXiv Detail & Related papers (2024-08-16T15:20:36Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
We present the UrbanPT, which seamlessly integrates atemporal-temporal encoder with instruction-tuning paradigm.
We conduct extensive experiments on various public datasets, covering differenttemporal prediction tasks.
The results consistently demonstrate that our UrbanPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-25T12:37:29Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Towards predicting Pedestrian Evacuation Time and Density from
Floorplans using a Vision Transformer [0.0]
In this work, we present a deep learning-based approach based on a Vision Transformer to predict density heatmaps over time and total evacuation time from a given floorplan.
Specifically, due to limited availability of public datasets, we implement a parametric data generation pipeline including a conventional simulator.
This enables us to build a large synthetic dataset that we use to train our architecture.
arXiv Detail & Related papers (2023-06-27T09:15:52Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
There are limitations in the existing field, including open-source data being in various formats and difficult to use.
We propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework.
arXiv Detail & Related papers (2023-04-27T17:19:26Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
This research introduces an implementation of a tensor-field-based generative urban modeling toolkit.
Our method encodes contextual constraints such as waterfront edges, terrain, view-axis, existing streets, landmarks, and non-geometric design inputs.
This allows users to generate many, diverse urban fabric configurations that resemble real-world cities with very few model inputs.
arXiv Detail & Related papers (2022-12-13T17:58:02Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
arXiv Detail & Related papers (2020-02-14T16:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.