Generalization of Urban Wind Environment Using Fourier Neural Operator Across Different Wind Directions and Cities
- URL: http://arxiv.org/abs/2501.05499v1
- Date: Thu, 09 Jan 2025 18:02:12 GMT
- Title: Generalization of Urban Wind Environment Using Fourier Neural Operator Across Different Wind Directions and Cities
- Authors: Cheng Chen, Geng Tian, Shaoxiang Qin, Senwen Yang, Dingyang Geng, Dongxue Zhan, Jinqiu Yang, David Vidal, Liangzhu Leon Wang,
- Abstract summary: This study investigates the effectiveness of the Fourier Neural Operator (FNO) model in predicting flow fields under different wind directions and urban layouts.
By training the model on velocity data from large eddy simulation data, we evaluate the performance of the model under different urban configurations and wind conditions.
The results show that the FNO model can provide accurate predictions while significantly reducing the computational time by 99%.
- Score: 3.161712948860127
- License:
- Abstract: Simulation of urban wind environments is crucial for urban planning, pollution control, and renewable energy utilization. However, the computational requirements of high-fidelity computational fluid dynamics (CFD) methods make them impractical for real cities. To address these limitations, this study investigates the effectiveness of the Fourier Neural Operator (FNO) model in predicting flow fields under different wind directions and urban layouts. In this study, we investigate the effectiveness of the Fourier Neural Operator (FNO) model in predicting urban wind conditions under different wind directions and urban layouts. By training the model on velocity data from large eddy simulation data, we evaluate the performance of the model under different urban configurations and wind conditions. The results show that the FNO model can provide accurate predictions while significantly reducing the computational time by 99%. Our innovative approach of dividing the wind field into smaller spatial blocks for training improves the ability of the FNO model to capture wind frequency features effectively. The SDF data also provides important spatial building information, enhancing the model's ability to recognize physical boundaries and generate more realistic predictions. The proposed FNO approach enhances the AI model's generalizability for different wind directions and urban layouts.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Fourier neural operator for real-time simulation of 3D dynamic urban
microclimate [2.1680962744993657]
We apply the Fourier Neural Operator (FNO) network for real-time three-dimensional (3D) urban wind field simulation.
Numerical experiments show that the FNO model can accurately reconstruct the instantaneous spatial velocity field.
We further evaluate the trained FNO model on unseen data with different wind directions, and the results show that the FNO model can generalize well on different wind directions.
arXiv Detail & Related papers (2023-08-08T02:03:47Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Modeling Wind Turbine Performance and Wake Interactions with Machine
Learning [0.0]
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm.
ML methods for data quality control and pre-processing are applied to the data set under investigation.
A hybrid model is found to achieve high accuracy for modeling wind turbine power capture.
arXiv Detail & Related papers (2022-12-02T23:07:05Z) - FastFlow: AI for Fast Urban Wind Velocity Prediction [0.0]
We present the use of CNNs for urban layout characterization that is typically done via high-fidelity numerical simulation.
We apply this model towards a first demonstration of its utility for data-driven pedestrian-level wind velocity prediction.
arXiv Detail & Related papers (2022-11-22T06:13:48Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z) - Multistream Graph Attention Networks for Wind Speed Forecasting [4.644923443649426]
This paper presents a new model for wind speed prediction based on Graph Attention Networks (GAT)
In particular, the proposed model extends GAT architecture by equipping it with a learnable adjacency matrix.
We show that in comparison to previous architectures used for wind speed prediction, the proposed model is able to better learn the complex input-output relationships of the weather data.
arXiv Detail & Related papers (2021-08-16T12:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.