Multimorbidity Content-Based Medical Image Retrieval Using Proxies
- URL: http://arxiv.org/abs/2211.12185v1
- Date: Tue, 22 Nov 2022 11:23:53 GMT
- Title: Multimorbidity Content-Based Medical Image Retrieval Using Proxies
- Authors: Yunyan Xing, Benjamin J. Meyer, Mehrtash Harandi, Tom Drummond,
Zongyuan Ge
- Abstract summary: We propose a novel multi-label metric learning method that can be used for both classification and content-based image retrieval.
Our model is able to support diagnosis by predicting the presence of diseases and provide evidence for these predictions.
We demonstrate the efficacy of our approach to both classification and content-based image retrieval on two multimorbidity radiology datasets.
- Score: 37.47987844057842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content-based medical image retrieval is an important diagnostic tool that
improves the explainability of computer-aided diagnosis systems and provides
decision making support to healthcare professionals. Medical imaging data, such
as radiology images, are often multimorbidity; a single sample may have more
than one pathology present. As such, image retrieval systems for the medical
domain must be designed for the multi-label scenario. In this paper, we propose
a novel multi-label metric learning method that can be used for both
classification and content-based image retrieval. In this way, our model is
able to support diagnosis by predicting the presence of diseases and provide
evidence for these predictions by returning samples with similar pathological
content to the user. In practice, the retrieved images may also be accompanied
by pathology reports, further assisting in the diagnostic process. Our method
leverages proxy feature vectors, enabling the efficient learning of a robust
feature space in which the distance between feature vectors can be used as a
measure of the similarity of those samples. Unlike existing proxy-based
methods, training samples are able to assign to multiple proxies that span
multiple class labels. This multi-label proxy assignment results in a feature
space that encodes the complex relationships between diseases present in
medical imaging data. Our method outperforms state-of-the-art image retrieval
systems and a set of baseline approaches. We demonstrate the efficacy of our
approach to both classification and content-based image retrieval on two
multimorbidity radiology datasets.
Related papers
- VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Benchmarking Pretrained Vision Embeddings for Near- and Duplicate Detection in Medical Images [0.6827423171182154]
We present an approach for identifying near- and duplicate 3D medical images leveraging publicly available 2D computer vision embeddings.
We generate an experimental benchmark based on the publicly available Medical Decathlon dataset.
arXiv Detail & Related papers (2023-12-12T13:52:55Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
We propose eye-tracking as an alternative to text reports for medical images.
By tracking the gaze of radiologists as they read and diagnose medical images, we can understand their visual attention and clinical reasoning.
We introduce the Medical contrastive Gaze Image Pre-training (McGIP) as a plug-and-play module for contrastive learning frameworks.
arXiv Detail & Related papers (2023-12-11T02:27:45Z) - A Spatial Guided Self-supervised Clustering Network for Medical Image
Segmentation [16.448375091671004]
We propose a new spatial guided self-supervised clustering network (SGSCN) for medical image segmentation.
It iteratively learns feature representations and clustering assignment of each pixel in an end-to-end fashion from a single image.
We evaluated our method on 2 public medical image datasets and compared it to existing conventional and self-supervised clustering methods.
arXiv Detail & Related papers (2021-07-11T00:40:40Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Additive Angular Margin for Few Shot Learning to Classify Clinical
Endoscopy Images [42.74958357195011]
We propose a few-shot learning approach that requires less training data and can be used to predict label classes of test samples from an unseen dataset.
We compare our approach to the several established methods on a large cohort of multi-center, multi-organ, and multi-modal endoscopy data.
arXiv Detail & Related papers (2020-03-23T00:20:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.