Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models
- URL: http://arxiv.org/abs/2211.12521v2
- Date: Sun, 27 Nov 2022 10:25:59 GMT
- Title: Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models
- Authors: Thomas Bilitewski and Ana Maria Rey
- Abstract summary: We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the non-equilibrium dynamics of dipoles confined in multiple stacked
two-dimensional layers realising a long-range interacting quantum spin 1/2 XXZ
model. We demonstrate that strong in-plane XXX interactions can protect a
manifold of collective layer dynamics. This then allows us to map the many-body
spin dynamics to bosonic models. In a bilayer configuration we show how to
engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum
optics, resulting in exponential production of entangled pairs and generation
of metrologically useful entanglement from initially prepared product states.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model
displaying chiral propagation along the layer direction. Our study illustrates
how the control over interactions, lattice geometry and state preparation in
interacting dipolar systems uniquely afforded by AMO platforms such as Rydberg
and magnetic atoms, polar molecules or trapped ions allow for the control over
the temporal and spatial propagation of correlations for applications in
quantum sensing and quantum simulation.
Related papers
- Mean-field and cumulant approaches to modelling organic polariton physics [0.0]
We develop methods for many-body open quantum systems and apply them to systems of organic polaritons.
The methods employ a mean-field approach to reduce the dimensionality of large-scale problems.
We show how the cumulant expansions may be used to calculate spatially resolved dynamics of organic polaritons.
arXiv Detail & Related papers (2024-05-16T04:54:41Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Momentum-selective pair creation of spin excitations in dipolar bilayers [0.0]
We study the temporal growth and spatial propagation of quantum correlations in a two-dimensional bilayer realising a spin-1/2 quantum XXZ model with couplings mediated by long-range and anisotropic dipolar interactions.
The predicted behavior remains observable at very low filling fractions, making it accessible in state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.
arXiv Detail & Related papers (2023-02-17T18:50:13Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.