論文の概要: SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models
- arxiv url: http://arxiv.org/abs/2104.14951v1
- Date: Fri, 30 Apr 2021 12:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 18:15:29.677846
- Title: SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models
- Title(参考訳): SRDiff:拡散確率モデルを用いた単一画像超解法
- Authors: Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li,
Yueting Chen
- Abstract要約: 単一の画像スーパーリゾリューション(SISR)は、与えられた低リゾリューション(LR)画像から高解像度(HR)画像を再構成することを目的とする。
新規な単像超解像拡散確率モデル(SRDiff)を提案する。
SRDiffはデータ可能性の変動境界の変種に最適化されており、多様で現実的なSR予測を提供することができる。
- 参考スコア(独自算出の注目度): 19.17571465274627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single image super-resolution (SISR) aims to reconstruct high-resolution (HR)
images from the given low-resolution (LR) ones, which is an ill-posed problem
because one LR image corresponds to multiple HR images. Recently,
learning-based SISR methods have greatly outperformed traditional ones, while
suffering from over-smoothing, mode collapse or large model footprint issues
for PSNR-oriented, GAN-driven and flow-based methods respectively. To solve
these problems, we propose a novel single image super-resolution diffusion
probabilistic model (SRDiff), which is the first diffusion-based model for
SISR. SRDiff is optimized with a variant of the variational bound on the data
likelihood and can provide diverse and realistic SR predictions by gradually
transforming the Gaussian noise into a super-resolution (SR) image conditioned
on an LR input through a Markov chain. In addition, we introduce residual
prediction to the whole framework to speed up convergence. Our extensive
experiments on facial and general benchmarks (CelebA and DIV2K datasets) show
that 1) SRDiff can generate diverse SR results in rich details with
state-of-the-art performance, given only one LR input; 2) SRDiff is easy to
train with a small footprint; and 3) SRDiff can perform flexible image
manipulation including latent space interpolation and content fusion.
- Abstract(参考訳): 単一画像超解像(SISR)は、与えられた低解像度(LR)画像から高解像度(HR)画像を再構成することを目的としている。
近年,学習型SISR法は,PSNR法,GAN法,フローベース法において,過度な平滑化,モード崩壊,あるいはモデルフットプリントの問題に悩まされているが,従来の手法よりも優れていた。
そこで本研究では,sisrの最初の拡散ベースモデルであるsrdiff(single image super- resolution diffusion probabilistic model)を提案する。
SRDiffはデータ可能性の変動境界の変種に最適化されており、ガウスノイズを徐々にマルコフ連鎖を介してLR入力に条件付された超高解像度(SR)画像に変換することにより、多種多様な現実的なSR予測を提供することができる。
さらに,収束を高速化するために,フレームワーク全体の残差予測を導入する。
顔と一般的なベンチマーク(CelebA と DIV2K のデータセット)に関する広範な実験により,1) SRDiff は1つのLR入力しか持たない,多種多様な SR 結果を生成することができ,2) SRDiff は小さなフットプリントで容易に訓練でき,3) SRDiff は潜時空間補間やコンテンツ融合などの柔軟な画像操作を行うことができることがわかった。
関連論文リスト
- Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSRは、最先端のSR手法と比較して、客観的な指標と視覚的品質を達成する。
拡散に基づくSR法の推論時間を非拡散法と同程度のレベルに短縮する。
論文 参考訳(メタデータ) (2024-10-30T09:14:13Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
実世界のLR画像とHR画像の双方向多対多マッピングを教師なしで同時に学習するSDFlowと呼ばれる画像ダウンスケーリングとSRモデルを提案する。
実世界の画像SRデータセットによる実験結果から,SDFlowは定量的かつ定性的に,多様な現実的なLRとSRの画像を生成可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-08T01:48:34Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
単一画像超解像(SISR)は、与えられた低解像度(LR)画像を高解像度(HR)にアップサンプリングすることを目的とした課題である。
近年のアプローチは、単純化されたダウンサンプリング演算子によって劣化したシミュレーションLR画像に基づいて訓練されている。
Invertible Scale-Conditional Function (ICF) を提案する。これは入力画像をスケールし、異なるスケール条件で元の入力を復元する。
論文 参考訳(メタデータ) (2023-07-24T12:42:45Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
単一像超解像(SISR)は、通常、様々な劣化した低分解能(LR)画像を単一の高分解能(HR)画像に復元することに焦点を当てる。
モデルが細部やテクスチャの多様性を保ちながら、高品質かつ迅速なサンプリングを同時に維持することは、しばしば困難である。
この課題は、モデル崩壊、再構成されたHR画像におけるリッチディテールとテクスチャの特徴の欠如、モデルサンプリングの過剰な時間消費などの問題を引き起こす可能性がある。
論文 参考訳(メタデータ) (2022-11-16T09:37:07Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
LRモデルとSRモデルに組み込んだ学習可能な適応正弦波非線形性を提案し,分解分布を直接学習する。
定量的および定性的な実験において提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-19T09:23:37Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
本稿では、上記の問題に対処するために、正規化フロー(BlindSRSNF)に基づく新しいブラインドSRフレームワークを提案する。
BlindSRSNFは、低解像度(LR)画像が与えられた高解像度画像空間上の条件確率分布を、確率の変動境界を明示的に最適化することによって学習する。
提案アルゴリズムは,シミュレーションLRと実世界RSIの両方において,視覚的品質の優れたSR結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-14T12:37:32Z) - Towards Lightweight Super-Resolution with Dual Regression Learning [58.98801753555746]
深層ニューラルネットワークは、画像超解像(SR)タスクにおいて顕著な性能を示した。
SR問題は通常不適切な問題であり、既存の手法にはいくつかの制限がある。
本稿では、SRマッピングの可能な空間を削減するために、二重回帰学習方式を提案する。
論文 参考訳(メタデータ) (2022-07-16T12:46:10Z) - Learning Multiple Probabilistic Degradation Generators for Unsupervised
Real World Image Super Resolution [5.987801889633082]
教師なしの現実世界のスーパーレゾリューションは、ペア化されたデータが利用できない場合に、低解像度(LR)入力を与えられた高解像度(HR)イメージを復元することを目的としている。
最も一般的なアプローチの1つは、GANを使ってノイズの多いLR画像を合成し、合成データセットを使用してモデルを教師付きで訓練することである。
HR画像が与えられたLR画像の分布を近似する確率分解生成器を提案する。
論文 参考訳(メタデータ) (2022-01-26T04:49:11Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
単一画像超解像(SISR)は、低解像度(LR)画像を高解像度(HR)バージョンにアップサンプリングする根本的な問題を扱う。
本稿では,線形組立画素適応回帰ネットワーク (LAPAR) を提案する。
論文 参考訳(メタデータ) (2021-05-21T15:47:18Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
実画像超解像(Real-SR)は、実世界の高分解能画像(HR)と低分解能画像(LR)の関係に焦点を当てている。
本稿では,Real-SRのためのデュアルパス動的拡張ネットワーク(DDet)を提案する。
特徴表現のための大規模な畳み込みブロックを積み重ねる従来の手法とは異なり、非一貫性のある画像対を研究するためのコンテンツ認識フレームワークを導入する。
論文 参考訳(メタデータ) (2020-02-25T18:24:51Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。