A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- URL: http://arxiv.org/abs/2211.13157v3
- Date: Tue, 19 Nov 2024 07:10:34 GMT
- Title: A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- Authors: James Daniell, Kazuma Kobayashi, Ayodeji Alajo, Syed Bahauddin Alam,
- Abstract summary: This paper introduces a novel multi-stage deep learning framework for predicting the final steady-state power of reactor transients.
We use feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state.
The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting.
- Score: 0.4166512373146748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes.
Related papers
- ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer [58.49950218437718]
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech.
The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture.
To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization.
arXiv Detail & Related papers (2025-03-27T16:39:40Z) - Towards Efficient Parametric State Estimation in Circulating Fuel Reactors with Shallow Recurrent Decoder Networks [3.422016133670755]
This paper considers as a test case the Molten Salt Fast Reactor (MSFR), a Generation-IV reactor concept, characterised by strong coupling between the neutronics and the thermal hydraulics.
The accurate reconstruction of every characteristic field in real-time makes this approach suitable for monitoring and control purposes in the framework of a reactor digital twin.
arXiv Detail & Related papers (2025-03-11T21:32:28Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)
We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.
Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.
We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.
Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Virtual Sensing-Enabled Digital Twin Framework for Real-Time Monitoring of Nuclear Systems Leveraging Deep Neural Operators [0.36651088217486427]
This paper introduces the use of Deep Operator Networks (DeepONet) as a core component of a digital twin framework.
DeepONet serves as a dynamic and scalable virtual sensor by accurately mapping the interplay between operational input parameters and spatially distributed system behaviors.
Our results show that DeepONet achieves accurate predictions with low mean squared error and relative L2 error and can make predictions on unknown data 1400 times faster than traditional CFD simulations.
arXiv Detail & Related papers (2024-10-17T16:56:04Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
Current on-device training methods just focus on efficient training without considering the catastrophic forgetting.
This paper proposes a simple but effective edge-friendly incremental learning framework.
Our method achieves average accuracy boost of 38.08% with even less memory and approximate computation.
arXiv Detail & Related papers (2024-06-13T05:49:29Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Reactor Optimization Benchmark by Reinforcement Learning [0.24374097382908472]
This paper introduces a novel benchmark problem within the OpenNeoMC framework designed specifically for reinforcement learning.
The test case features distinct local optima, representing different physical regimes, thus posing a challenge for learning algorithms.
We demonstrate the effectiveness of reinforcement learning in navigating complex optimization landscapes with strict constraints.
arXiv Detail & Related papers (2024-03-21T10:26:47Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Deep Neural Operator Driven Real Time Inference for Nuclear Systems to Enable Digital Twin Solutions [0.5115559623386964]
This study showcases the generalizability and computational efficiency of DeepONet in solving a challenging particle transport problem.
DeepONet also exhibits remarkable prediction accuracy and speed, outperforming traditional ML methods.
Overall, DeepONet presents a promising and transformative nuclear engineering research and applications tool.
arXiv Detail & Related papers (2023-08-15T01:25:35Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - A Long-term Dependent and Trustworthy Approach to Reactor Accident
Prognosis based on Temporal Fusion Transformer [0.779964823075849]
We propose a method for accident prognosis based on the Temporal Fusion Transformer (TFT) model with multi-headed self-attention and gating mechanisms.
The method is applied to the prognosis after loss of coolant accidents (LOCAs) in HPR1000 reactor.
arXiv Detail & Related papers (2022-10-28T13:08:48Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Deep Surrogate Models for Multi-dimensional Regression of Reactor Power [0.0]
We establish the capability of neural networks to provide an accurate and precise multi-dimensional regression of a nuclear reactor's power distribution.
The results indicate that neural networks are an appropriate choice for surrogate models to implement in an autonomous reactor control framework.
arXiv Detail & Related papers (2020-07-10T15:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.