A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- URL: http://arxiv.org/abs/2211.13157v3
- Date: Tue, 19 Nov 2024 07:10:34 GMT
- Title: A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- Authors: James Daniell, Kazuma Kobayashi, Ayodeji Alajo, Syed Bahauddin Alam,
- Abstract summary: This paper introduces a novel multi-stage deep learning framework for predicting the final steady-state power of reactor transients.
We use feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state.
The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting.
- Score: 0.4166512373146748
- License:
- Abstract: The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes.
Related papers
- Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
Current on-device training methods just focus on efficient training without considering the catastrophic forgetting.
This paper proposes a simple but effective edge-friendly incremental learning framework.
Our method achieves average accuracy boost of 38.08% with even less memory and approximate computation.
arXiv Detail & Related papers (2024-06-13T05:49:29Z) - Reactor Optimization Benchmark by Reinforcement Learning [0.24374097382908472]
This paper introduces a novel benchmark problem within the OpenNeoMC framework designed specifically for reinforcement learning.
The test case features distinct local optima, representing different physical regimes, thus posing a challenge for learning algorithms.
We demonstrate the effectiveness of reinforcement learning in navigating complex optimization landscapes with strict constraints.
arXiv Detail & Related papers (2024-03-21T10:26:47Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Deep Neural Operator Driven Real Time Inference for Nuclear Systems to Enable Digital Twin Solutions [0.5115559623386964]
This study showcases the generalizability and computational efficiency of DeepONet in solving a challenging particle transport problem.
DeepONet also exhibits remarkable prediction accuracy and speed, outperforming traditional ML methods.
Overall, DeepONet presents a promising and transformative nuclear engineering research and applications tool.
arXiv Detail & Related papers (2023-08-15T01:25:35Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - A Long-term Dependent and Trustworthy Approach to Reactor Accident
Prognosis based on Temporal Fusion Transformer [0.779964823075849]
We propose a method for accident prognosis based on the Temporal Fusion Transformer (TFT) model with multi-headed self-attention and gating mechanisms.
The method is applied to the prognosis after loss of coolant accidents (LOCAs) in HPR1000 reactor.
arXiv Detail & Related papers (2022-10-28T13:08:48Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Deep Surrogate Models for Multi-dimensional Regression of Reactor Power [0.0]
We establish the capability of neural networks to provide an accurate and precise multi-dimensional regression of a nuclear reactor's power distribution.
The results indicate that neural networks are an appropriate choice for surrogate models to implement in an autonomous reactor control framework.
arXiv Detail & Related papers (2020-07-10T15:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.