A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- URL: http://arxiv.org/abs/2211.13157v3
- Date: Tue, 19 Nov 2024 07:10:34 GMT
- Title: A Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction
- Authors: James Daniell, Kazuma Kobayashi, Ayodeji Alajo, Syed Bahauddin Alam,
- Abstract summary: This paper introduces a novel multi-stage deep learning framework for predicting the final steady-state power of reactor transients.
We use feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state.
The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting.
- Score: 0.4166512373146748
- License:
- Abstract: The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.
We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.
Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Virtual Sensing-Enabled Digital Twin Framework for Real-Time Monitoring of Nuclear Systems Leveraging Deep Neural Operators [0.36651088217486427]
This paper introduces the use of Deep Operator Networks (DeepONet) as a core component of a digital twin framework.
DeepONet serves as a dynamic and scalable virtual sensor by accurately mapping the interplay between operational input parameters and spatially distributed system behaviors.
Our results show that DeepONet achieves accurate predictions with low mean squared error and relative L2 error and can make predictions on unknown data 1400 times faster than traditional CFD simulations.
arXiv Detail & Related papers (2024-10-17T16:56:04Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Reactor Optimization Benchmark by Reinforcement Learning [0.24374097382908472]
This paper introduces a novel benchmark problem within the OpenNeoMC framework designed specifically for reinforcement learning.
The test case features distinct local optima, representing different physical regimes, thus posing a challenge for learning algorithms.
We demonstrate the effectiveness of reinforcement learning in navigating complex optimization landscapes with strict constraints.
arXiv Detail & Related papers (2024-03-21T10:26:47Z) - Deep Neural Operator Driven Real Time Inference for Nuclear Systems to Enable Digital Twin Solutions [0.5115559623386964]
This study showcases the generalizability and computational efficiency of DeepONet in solving a challenging particle transport problem.
DeepONet also exhibits remarkable prediction accuracy and speed, outperforming traditional ML methods.
Overall, DeepONet presents a promising and transformative nuclear engineering research and applications tool.
arXiv Detail & Related papers (2023-08-15T01:25:35Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Deep Surrogate Models for Multi-dimensional Regression of Reactor Power [0.0]
We establish the capability of neural networks to provide an accurate and precise multi-dimensional regression of a nuclear reactor's power distribution.
The results indicate that neural networks are an appropriate choice for surrogate models to implement in an autonomous reactor control framework.
arXiv Detail & Related papers (2020-07-10T15:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.