Evolutionary Generalized Zero-Shot Learning
- URL: http://arxiv.org/abs/2211.13174v2
- Date: Sun, 12 May 2024 07:16:04 GMT
- Title: Evolutionary Generalized Zero-Shot Learning
- Authors: Dubing Chen, Chenyi Jiang, Haofeng Zhang,
- Abstract summary: Attribute-based Zero-Shot Learning (ZSL) has revolutionized the ability of models to recognize new classes not seen during training.
We introduce a scaled-down instantiation of this challenge: Evolutionary Generalized Zero-Shot Learning (EGZSL)
This setting allows a low-performing zero-shot model to adapt to the test data stream and evolve online.
- Score: 19.278497273850316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribute-based Zero-Shot Learning (ZSL) has revolutionized the ability of models to recognize new classes not seen during training. However, with the advancement of large-scale models, the expectations have risen. Beyond merely achieving zero-shot generalization, there is a growing demand for universal models that can continually evolve in expert domains using unlabeled data. To address this, we introduce a scaled-down instantiation of this challenge: Evolutionary Generalized Zero-Shot Learning (EGZSL). This setting allows a low-performing zero-shot model to adapt to the test data stream and evolve online. We elaborate on three challenges of this special task, \ie, catastrophic forgetting, initial prediction bias, and evolutionary data class bias. Moreover, we propose targeted solutions for each challenge, resulting in a generic method capable of continuous evolution from a given initial IGZSL model. Experiments on three popular GZSL benchmark datasets demonstrate that our model can learn from the test data stream while other baselines fail. Codes are available at \url{https://github.com/cdb342/EGZSL}.
Related papers
- Meta-Learned Attribute Self-Interaction Network for Continual and
Generalized Zero-Shot Learning [46.6282595346048]
Zero-shot learning (ZSL) is a promising approach to generalizing a model to unseen categories during training.
We propose a Meta-learned Attribute self-Interaction Network (MAIN) for continual ZSL.
By pairing attribute self-interaction trained using meta-learning with inverse regularization of the attribute encoder, we are able to outperform state-of-the-art results without leveraging the unseen class attributes.
arXiv Detail & Related papers (2023-12-02T16:23:01Z) - Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
We address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling.
We propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss.
Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7%.
arXiv Detail & Related papers (2023-08-23T18:10:12Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
arXiv Detail & Related papers (2022-09-05T14:49:34Z) - Unseen Classes at a Later Time? No Problem [17.254973125515402]
We propose a new Online-CGZSL setting which is more practical and flexible.
We introduce a unified feature-generative framework for CGZSL that leverages bi-directional incremental alignment to dynamically adapt to addition of new classes, with or without labeled data, that arrive over time in any of these CGZSL settings.
arXiv Detail & Related papers (2022-03-30T17:52:16Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
We propose a meta-continual zero-shot learning (MCZSL) approach to generalizing a model to categories unseen during training.
By pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results.
arXiv Detail & Related papers (2021-02-23T18:36:14Z) - Adversarial Training of Variational Auto-encoders for Continual
Zero-shot Learning [1.90365714903665]
We present a hybrid network that consists of a shared VAE module to hold information of all tasks and task-specific private VAE modules for each task.
The model's size grows with each task to prevent catastrophic forgetting of task-specific skills.
We show our method is superior on class sequentially learning with ZSL(Zero-Shot Learning) and GZSL(Generalized Zero-Shot Learning)
arXiv Detail & Related papers (2021-02-07T11:21:24Z) - Generative Replay-based Continual Zero-Shot Learning [7.909034037183046]
We develop a generative replay-based continual ZSL (GRCZSL)
The proposed method endows traditional ZSL to learn from streaming data and acquire new knowledge without forgetting the previous tasks' experience.
The proposed GRZSL method is developed for a single-head setting of continual learning, simulating a real-world problem setting.
arXiv Detail & Related papers (2021-01-22T00:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.