Theory of topological defects and textures in two-dimensional quantum
orders with spontaneous symmetry breaking
- URL: http://arxiv.org/abs/2211.13207v1
- Date: Wed, 23 Nov 2022 18:50:02 GMT
- Title: Theory of topological defects and textures in two-dimensional quantum
orders with spontaneous symmetry breaking
- Authors: Yan-Qi Wang, Chunxiao Liu and Yuan-Ming Lu
- Abstract summary: We study the topological point defects and textures of order parameters in two-dimensional quantum many-body systems.
In the absence of intrinsic topological orders, we show a connection between the symmetry properties of point defects and textures to deconfined quantum criticality.
When the symmetry-breaking ground state have intrinsic topological orders, we show that the point defects can permute different anyons when braided around.
- Score: 9.847963830982243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider two-dimensional (2d) quantum many-body systems with long-range
orders, where the only gapless excitations in the spectrum are Goldstone modes
of spontaneously broken continuous symmetries. To understand the interplay
between classical long-range order of local order parameters and quantum order
of long-range entanglement in the ground states, we study the topological point
defects and textures of order parameters in such systems. We show that the
universal properties of point defects and textures are determined by the
remnant symmetry enriched topological order in the symmetry-breaking ground
states with a non-fluctuating order parameter, and provide a classification for
their properties based on the inflation-restriction exact sequence. We
highlight a few phenomena revealed by our theory framework. First, in the
absence of intrinsic topological orders, we show a connection between the
symmetry properties of point defects and textures to deconfined quantum
criticality. Second, when the symmetry-breaking ground state have intrinsic
topological orders, we show that the point defects can permute different anyons
when braided around. They can also obey projective fusion rules in the sense
that multiple vortices can fuse into an Abelian anyon, a phenomena for which we
coin "defect fractionalization". Finally, we provide a formula to compute the
fractional statistics and fractional quantum numbers carried by textures
(skyrmions) in Abelian topological orders.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Towards a classification of mixed-state topological orders in two dimensions [4.380380626083065]
We take a step toward classifying mixed-state topological orders in two spatial dimensions.
We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.
We conjecture that mixed-state topological orders are classified by premodular anyon theories.
arXiv Detail & Related papers (2024-05-03T18:00:00Z) - A Noisy Approach to Intrinsically Mixed-State Topological Order [0.0]
We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
arXiv Detail & Related papers (2024-03-20T18:00:01Z) - Homotopy, Symmetry, and Non-Hermitian Band Topology [4.777212360753631]
We show that non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings.
We reveal different Abelian and non-Abelian phases in $mathcalPT$-symmetric systems.
These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena.
arXiv Detail & Related papers (2023-09-25T18:00:01Z) - Entanglement-enabled symmetry-breaking orders [0.0]
A spontaneous symmetry-breaking order is conventionally described by a tensor-product wave-function of some few-body clusters.
We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any tensor-product state.
arXiv Detail & Related papers (2022-07-18T18:00:00Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Topological and symmetry-enriched random quantum critical points [0.0]
We study how symmetry can enrich strong-randomness quantum critical points and phases.
These are the disordered analogues of gapless topological phases.
We uncover a new class of symmetry-enriched infinite randomness fixed points.
arXiv Detail & Related papers (2020-08-05T18:00:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.