A Noisy Approach to Intrinsically Mixed-State Topological Order
- URL: http://arxiv.org/abs/2403.13879v3
- Date: Wed, 25 Sep 2024 23:29:55 GMT
- Title: A Noisy Approach to Intrinsically Mixed-State Topological Order
- Authors: Ramanjit Sohal, Abhinav Prem,
- Abstract summary: We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a general framework for studying two-dimensional (2D) topologically ordered states subject to local correlated errors and show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO) -- topological order which is not expected to occur in the ground state of 2D local gapped Hamiltonians. Specifically, we show that decoherence, previously interpreted as anyon condensation in a doubled Hilbert space, is more naturally phrased as, and provides a physical mechanism for, ``gauging out" anyons in the original Hilbert space. We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries. This framework lays bare a striking connection between the decohered density matrix and topological subsystem codes, which can appear as anomalous surface states of 3D topological orders. Through a series of examples, we show that the decohered state can display a classical memory, encode logical qubits (i.e., exhibit a quantum memory), and even host chiral or non-modular topological order. We argue that a partial classification of imTO is given in terms of non-modular braided fusion categories.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Towards a classification of mixed-state topological orders in two dimensions [4.380380626083065]
We take a step toward classifying mixed-state topological orders in two spatial dimensions.
We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.
We conjecture that mixed-state topological orders are classified by premodular anyon theories.
arXiv Detail & Related papers (2024-05-03T18:00:00Z) - Replica topological order in quantum mixed states and quantum error
correction [0.0]
Topological phases of matter offer a promising platform for quantum computation and quantum error correction.
We give two definitions for replica topological order in mixed states, which involve $n$ copies of density matrices of the mixed state.
We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the quantum information, while in the classical-topological phase, the quantum information has decohere and cannot be fully recovered.
arXiv Detail & Related papers (2024-02-14T19:00:03Z) - Mixed-State Entanglement Measures in Topological Order [0.685316573653194]
We study the entanglement in topologically ordered states between two arbitrary spatial regions.
While the field-theoretic results are expected to be topological and universal, the lattice results contain nontopological/nonuniversal terms as well.
arXiv Detail & Related papers (2023-01-19T17:59:50Z) - Theory of topological defects and textures in two-dimensional quantum
orders with spontaneous symmetry breaking [9.847963830982243]
We study the topological point defects and textures of order parameters in two-dimensional quantum many-body systems.
In the absence of intrinsic topological orders, we show a connection between the symmetry properties of point defects and textures to deconfined quantum criticality.
When the symmetry-breaking ground state have intrinsic topological orders, we show that the point defects can permute different anyons when braided around.
arXiv Detail & Related papers (2022-11-23T18:50:02Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Frustration-free Hamiltonian with Topological Order on Graphs [1.933681537640272]
It is commonly believed that models defined on a closed one-dimensional manifold cannot give rise to topological order.
Here we construct frustration-free Hamiltonians which possess both symmetry protected topological order (SPT) and multiple ground state degeneracy (GSD)
Instead of global symmetry breaking, there exists a it local symmetry operator that commutes with the Hamiltonian and connects the multiple ground states.
arXiv Detail & Related papers (2020-12-09T09:19:27Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.