Towards a classification of mixed-state topological orders in two dimensions
- URL: http://arxiv.org/abs/2405.02390v1
- Date: Fri, 3 May 2024 18:00:00 GMT
- Title: Towards a classification of mixed-state topological orders in two dimensions
- Authors: Tyler Ellison, Meng Cheng,
- Abstract summary: We take a step toward classifying mixed-state topological orders in two spatial dimensions.
We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.
We conjecture that mixed-state topological orders are classified by premodular anyon theories.
- Score: 4.380380626083065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classification and characterization of topological phases of matter is well understood for ground states of gapped Hamiltonians that are well isolated from the environment. However, decoherence due to interactions with the environment is inevitable -- thus motivating the investigation of topological orders in the context of mixed states. Here, we take a step toward classifying mixed-state topological orders in two spatial dimensions by considering their (emergent) generalized symmetries. We argue that their 1-form symmetries and the associated anyon theories lead to a partial classification under two-way connectivity by quasi-local quantum channels. This allows us to establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart. We provide a wide range of examples based on topological subsystem codes, decohering $G$-graded string-net models, and "classically gauging" symmetry-enriched topological orders. One of our main examples is an Ising string-net model under the influence of dephasing noise. We study the resulting space of locally-indistinguishable states and compute the modular transformations within a particular coherent space. Based on our examples, we identify two possible effects of quasi-local quantum channels on anyon theories: (1) anyons can be incoherently proliferated -- thus reducing to a commutant of the proliferated anyons, or (2) the system can be "classically gauged", resulting in the symmetrization of anyons and an extension by transparent bosons. Given these two mechanisms, we conjecture that mixed-state topological orders are classified by premodular anyon theories, i.e., those for which the braiding relations may be degenerate.
Related papers
- A Noisy Approach to Intrinsically Mixed-State Topological Order [0.0]
We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
arXiv Detail & Related papers (2024-03-20T18:00:01Z) - Intrinsic Mixed-state Quantum Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.
We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.
The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Theory of topological defects and textures in two-dimensional quantum
orders with spontaneous symmetry breaking [9.847963830982243]
We study the topological point defects and textures of order parameters in two-dimensional quantum many-body systems.
In the absence of intrinsic topological orders, we show a connection between the symmetry properties of point defects and textures to deconfined quantum criticality.
When the symmetry-breaking ground state have intrinsic topological orders, we show that the point defects can permute different anyons when braided around.
arXiv Detail & Related papers (2022-11-23T18:50:02Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Squaring the fermion: The threefold way and the fate of zero modes [0.0]
We investigate topological properties and classification of mean-field theories of stable bosonic systems.
Of the three standard classifying symmetries, only time-reversal represents a real symmetry of the many-boson system.
We unveil an elegant threefold-way topological classification of non-interacting bosons.
arXiv Detail & Related papers (2020-05-12T18:00:07Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.