論文の概要: MEGAN: Multi-Explanation Graph Attention Network
- arxiv url: http://arxiv.org/abs/2211.13236v1
- Date: Wed, 23 Nov 2022 16:10:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 14:56:55.289001
- Title: MEGAN: Multi-Explanation Graph Attention Network
- Title(参考訳): MEGAN: マルチ説明グラフアテンションネットワーク
- Authors: Jonas Teufel, Luca Torresi, Patrick Reiser, Pascal Friederich
- Abstract要約: 説明指導訓練は, 自己説明型XAIモデルを真実や人為的説明に基づいて訓練することにより, 説明品質の向上を可能にする。
我々は,新しいマルチエクスラレーショングラフアテンションネットワーク(MEGAN)を提案する。
我々の完全に差別化可能な注意ベースのモデルは、タスク仕様とは独立して選択できる複数の説明チャンネルを備えている。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable artificial intelligence (XAI) methods are expected to improve
trust during human-AI interactions, provide tools for model analysis and extend
human understanding of complex problems. Explanation-supervised training allows
to improve explanation quality by training self-explaining XAI models on ground
truth or human-generated explanations. However, existing explanation methods
have limited expressiveness and interoperability due to the fact that only
single explanations in form of node and edge importance are generated. To that
end we propose the novel multi-explanation graph attention network (MEGAN). Our
fully differentiable, attention-based model features multiple explanation
channels, which can be chosen independently of the task specifications. We
first validate our model on a synthetic graph regression dataset. We show that
for the special single explanation case, our model significantly outperforms
existing post-hoc and explanation-supervised baseline methods. Furthermore, we
demonstrate significant advantages when using two explanations, both in
quantitative explanation measures as well as in human interpretability.
Finally, we demonstrate our model's capabilities on multiple real-world
datasets. We find that our model produces sparse high-fidelity explanations
consistent with human intuition about those tasks and at the same time matches
state-of-the-art graph neural networks in predictive performance, indicating
that explanations and accuracy are not necessarily a trade-off.
- Abstract(参考訳): 説明可能な人工知能(XAI)手法は、人間とAIの相互作用における信頼の向上、モデル解析のツールの提供、複雑な問題に対する人間の理解の拡大を期待されている。
説明指導訓練は, 自己説明型XAIモデルを真実や人為的説明に基づいて訓練することにより, 説明品質の向上を可能にする。
しかし,既存の説明手法では,ノードやエッジの重要度という形でのみ説明が生成されるため,表現性や相互運用性が制限されている。
そこで我々は,新しい多言語グラフアテンションネットワーク(MEGAN)を提案する。
完全に微分可能な注意に基づくモデルは、タスク仕様とは独立に選択可能な複数の説明チャネルを備えています。
まず,合成グラフ回帰データセットを用いてモデルを検証した。
特別の単一説明の場合、本モデルが既存のポストホック法や説明教師付きベースライン法を大幅に上回っていることを示す。
さらに、定量的な説明法と人間の解釈可能性の両方において、2つの説明を用いる際の大きな利点を示す。
最後に、複数の実世界のデータセットでモデルの能力を実証する。
我々は,これらの課題に対する人間の直感と一致した細かな高忠実な説明を生成すると同時に,最新のグラフニューラルネットワークと予測性能を一致させることで,説明と精度が必ずしもトレードオフではないことを示す。
関連論文リスト
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Generative Explanations for Graph Neural Network: Methods and
Evaluations [16.67839967139831]
グラフニューラルネットワーク(GNN)は、様々なグラフ関連タスクにおいて最先端のパフォーマンスを達成する。
GNNのブラックボックスの性質は、解釈可能性と信頼性を制限している。
GNNの意思決定ロジックを明らかにするために,多くの説明可能性手法が提案されている。
論文 参考訳(メタデータ) (2023-11-09T22:07:15Z) - Faithful Explanations for Deep Graph Models [44.3056871040946]
本稿では,グラフニューラルネットワーク(GNN)の忠実な説明について述べる。
これは、特徴属性やサブグラフ説明を含む既存の説明方法に適用される。
第3に,元のGNNへの忠実度を確実に最大化する新しい説明法である,畳み込みコア(KEC)を用いたEmphk-hop Explanationを導入する。
論文 参考訳(メタデータ) (2022-05-24T07:18:56Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
論文 参考訳(メタデータ) (2022-05-20T02:50:15Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - A Meta-Learning Approach for Training Explainable Graph Neural Networks [10.11960004698409]
本稿では,GNNの学習時間における説明可能性向上のためのメタラーニングフレームワークを提案する。
我々のフレームワークは、例えばノード分類などの元のタスクを解決するためにモデルを共同で訓練し、下流アルゴリズムで容易に処理可能な出力を提供する。
我々のモデルに依存しないアプローチは、異なるGNNアーキテクチャで生成された説明を改善し、このプロセスを駆動するためにインスタンスベースの説明器を使用することができます。
論文 参考訳(メタデータ) (2021-09-20T11:09:10Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Contrastive Graph Neural Network Explanation [13.234975857626749]
グラフニューラルネットワークは構造化データの問題に対して顕著な結果を得るが、ブラックボックス予測器として現れる。
我々は、訓練データの基礎となる分布に準拠するグラフを使用しなければならないと論じる。
本稿では,このパラダイムに従う新しいコントラストGNN説明手法を提案する。
論文 参考訳(メタデータ) (2020-10-26T15:32:42Z) - Explainable Deep Modeling of Tabular Data using TableGraphNet [1.376408511310322]
付加的特徴属性の形で説明可能な予測を生成する新しいアーキテクチャを提案する。
説明可能なモデルはブラックボックスモデルと同じレベルの性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-12T20:02:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。