Immersive Neural Graphics Primitives
- URL: http://arxiv.org/abs/2211.13494v1
- Date: Thu, 24 Nov 2022 09:33:38 GMT
- Title: Immersive Neural Graphics Primitives
- Authors: Ke Li, Tim Rolff, Susanne Schmidt, Reinhard Bacher, Simone Frintrop,
Wim Leemans, Frank Steinicke
- Abstract summary: We present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR.
Our approach can yield a frame rate of 30 frames per second with a resolution of 1280x720 pixels per eye.
- Score: 13.48024951446282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance field (NeRF), in particular its extension by instant neural
graphics primitives, is a novel rendering method for view synthesis that uses
real-world images to build photo-realistic immersive virtual scenes. Despite
its potential, research on the combination of NeRF and virtual reality (VR)
remains sparse. Currently, there is no integration into typical VR systems
available, and the performance and suitability of NeRF implementations for VR
have not been evaluated, for instance, for different scene complexities or
screen resolutions. In this paper, we present and evaluate a NeRF-based
framework that is capable of rendering scenes in immersive VR allowing users to
freely move their heads to explore complex real-world scenes. We evaluate our
framework by benchmarking three different NeRF scenes concerning their
rendering performance at different scene complexities and resolutions.
Utilizing super-resolution, our approach can yield a frame rate of 30 frames
per second with a resolution of 1280x720 pixels per eye. We discuss potential
applications of our framework and provide an open source implementation online.
Related papers
- VR-Splatting: Foveated Radiance Field Rendering via 3D Gaussian Splatting and Neural Points [4.962171160815189]
High-performance demands of virtual reality systems present challenges in utilizing fast-to-render scene representations like 3DGS.
We propose foveated rendering as a promising solution to these obstacles.
Our approach introduces a novel foveated rendering approach for Virtual Reality, that leverages the sharp, detailed output of neural point rendering for the foveal region, fused with a smooth rendering of 3DGS for the peripheral vision.
arXiv Detail & Related papers (2024-10-23T14:54:48Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices [53.28220984270622]
We present an implicit textured $textbfSurf$ace reconstruction method on mobile devices.
Our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets.
Our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second)
arXiv Detail & Related papers (2023-11-16T11:30:56Z) - VR-NeRF: High-Fidelity Virtualized Walkable Spaces [55.51127858816994]
We present an end-to-end system for the high-fidelity capture, model reconstruction, and real-time rendering of walkable spaces in virtual reality using neural radiance fields.
arXiv Detail & Related papers (2023-11-05T02:03:14Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
We explore how to leverage neural fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drone data.
In contrast to the single object scenes against which NeRFs have been traditionally evaluated, this setting poses multiple challenges.
We introduce a simple clustering algorithm that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel.
arXiv Detail & Related papers (2021-12-20T17:40:48Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z) - Baking Neural Radiance Fields for Real-Time View Synthesis [41.07052395570522]
We present a method to train a NeRF, then precompute and store (i.e. "bake") it as a novel representation called a Sparse Neural Radiance Grid (SNeRG)
The resulting scene representation retains NeRF's ability to render fine geometric details and view-dependent appearance, is compact, and can be rendered in real-time.
arXiv Detail & Related papers (2021-03-26T17:59:52Z) - FastNeRF: High-Fidelity Neural Rendering at 200FPS [17.722927021159393]
We propose FastNeRF, a system capable of rendering high fidelity images at 200Hz on a high-end consumer GPU.
The proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF.
arXiv Detail & Related papers (2021-03-18T17:09:12Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRF is a learning framework that predicts a continuous neural scene representation conditioned on one or few input images.
We conduct experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects.
In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction.
arXiv Detail & Related papers (2020-12-03T18:59:54Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.