論文の概要: Towards Interpretable Anomaly Detection via Invariant Rule Mining
- arxiv url: http://arxiv.org/abs/2211.13577v1
- Date: Thu, 24 Nov 2022 13:03:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 15:07:22.900745
- Title: Towards Interpretable Anomaly Detection via Invariant Rule Mining
- Title(参考訳): 不変規則マイニングによる解釈可能な異常検出に向けて
- Authors: Cheng Feng and Pingge Hu
- Abstract要約: 本研究では,不変ルールマイニングによる高度に解釈可能な異常検出を追求する。
具体的には、決定木学習と相関ルールマイニングを活用して、不変ルールを自動的に生成する。
生成された不変規則は、異常検出結果の明示的な説明を提供することができるため、その後の意思決定には極めて有用である。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the research area of anomaly detection, novel and promising methods are
frequently developed. However, most existing studies, especially those
leveraging deep neural networks, exclusively focus on the detection task only
and ignore the interpretability of the underlying models as well as their
detection results. However, anomaly interpretation, which aims to provide
explanation of why specific data instances are identified as anomalies, is an
equally (if not more) important task in many real-world applications. In this
work, we pursue highly interpretable anomaly detection via invariant rule
mining. Specifically, we leverage decision tree learning and association rule
mining to automatically generate invariant rules that are consistently
satisfied by the underlying data generation process. The generated invariant
rules can provide explicit explanation of anomaly detection results and thus
are extremely useful for subsequent decision-making. Furthermore, our empirical
evaluation shows that the proposed method can also achieve comparable
performance in terms of AUC and partial AUC with popular anomaly detection
models in various benchmark datasets.
- Abstract(参考訳): 異常検出研究領域では,新規かつ有望な手法が頻繁に開発されている。
しかしながら、既存の研究、特にディープニューラルネットワークを活用した研究は、検出タスクのみに集中し、基礎となるモデルの解釈可能性と検出結果を無視している。
しかしながら、特定のデータインスタンスが異常として識別される理由を説明することを目的とした異常解釈は、多くの現実世界アプリケーションにおいて、同じように(それ以上ではないにしても)重要なタスクである。
本研究では,不変規則マイニングによる高度に解釈可能な異常検出を追求する。
具体的には、決定木学習と関連ルールマイニングを活用し、基礎となるデータ生成プロセスで一貫して満たされる不変ルールを自動的に生成する。
生成された不変規則は異常検出結果の明示的な説明を提供することができ、それゆえその後の意思決定に非常に有用である。
さらに,提案手法は,AUCおよび部分AUCにおいて,様々なベンチマークデータセットで一般的な異常検出モデルと同等の性能を達成できることを示す。
関連論文リスト
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Open-Set Graph Anomaly Detection via Normal Structure Regularisation [30.638274744518682]
Open-set Graph Anomaly Detection (GAD)は、少数の正規ノードと異常ノードを使用して検出モデルをトレーニングすることを目的としている。
現在の監督型GAD法は、目に見えない異常を正常なノードとして検出する多くの誤りを招き、その異常を過度に強調する傾向にある。
本稿では,新しいオープンセットGAD手法,すなわち正規構造正規化(NSReg)を提案する。
論文 参考訳(メタデータ) (2023-11-12T13:25:28Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。