論文の概要: Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
- arxiv url: http://arxiv.org/abs/2211.13829v2
- Date: Tue, 16 May 2023 15:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 19:26:19.967178
- Title: Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles
- Title(参考訳): 知識ベースニューラル常微分方程式とディープアンサンブルを用いた学習強調非線形モデル予測制御
- Authors: Kong Yao Chee, M. Ani Hsieh and Nikolai Matni
- Abstract要約: 本研究では,知識に基づくニューラル常微分方程式(KNODE)とディープアンサンブルというディープラーニングツールを活用し,モデル予測制御(MPC)の予測精度を向上させる。
特に、KNODEモデルのアンサンブル(KNODEアンサンブル)を学習し、真のシステム力学の正確な予測を得る。
KNODEアンサンブルはより正確な予測を提供し、提案した非線形MPCフレームワークの有効性と閉ループ性能を示す。
- 参考スコア(独自算出の注目度): 5.650647159993238
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Nonlinear model predictive control (MPC) is a flexible and increasingly
popular framework used to synthesize feedback control strategies that can
satisfy both state and control input constraints. In this framework, an
optimization problem, subjected to a set of dynamics constraints characterized
by a nonlinear dynamics model, is solved at each time step. Despite its
versatility, the performance of nonlinear MPC often depends on the accuracy of
the dynamics model. In this work, we leverage deep learning tools, namely
knowledge-based neural ordinary differential equations (KNODE) and deep
ensembles, to improve the prediction accuracy of this model. In particular, we
learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to
obtain an accurate prediction of the true system dynamics. This learned model
is then integrated into a novel learning-enhanced nonlinear MPC framework. We
provide sufficient conditions that guarantees asymptotic stability of the
closed-loop system and show that these conditions can be implemented in
practice. We show that the KNODE ensemble provides more accurate predictions
and illustrate the efficacy and closed-loop performance of the proposed
nonlinear MPC framework using two case studies.
- Abstract(参考訳): 非線形モデル予測制御(英語版) (MPC) は、状態制約と制御入力制約の両方を満たすフィードバック制御戦略を合成するために使われる柔軟で普及しているフレームワークである。
このフレームワークでは、非線形ダイナミクスモデルによって特徴付けられる一連のダイナミクス制約を課す最適化問題を各時間ステップで解く。
汎用性にもかかわらず、非線形mpcの性能はダイナミクスモデルの精度に依存することが多い。
本研究では,知識に基づくニューラル常微分方程式(KNODE)とディープアンサンブルを用いたディープラーニングツールを用いて,モデルの予測精度を向上させる。
特に、KNODEモデルのアンサンブル(KNODEアンサンブル)を学習し、真のシステム力学の正確な予測を得る。
この学習モデルは、新しい学習強化非線形MPCフレームワークに統合される。
閉ループ系の漸近安定性を保証する十分条件を提供し,これらの条件を実際に実装可能であることを示す。
KNODEアンサンブルはより正確な予測を提供し、2つのケーススタディを用いて提案した非線形MPCフレームワークの有効性と閉ループ性能を示す。
関連論文リスト
- Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
そこで本研究では,モンテカルロのドロップアウト手法を学習システムモデルに応用した,サンプリングベースアンサンブルニューラルMPCアルゴリズムを提案する。
この手法は一般に複雑な力学を持つ不確実なシステムを対象としており、第一原理から派生したモデルは推論が難しい。
論文 参考訳(メタデータ) (2024-06-04T17:15:25Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
本稿では,動的に重要な不確かさを補う学習に基づく頑健な予測制御アルゴリズムを提案する。
我々は、一定の等価な「推定とキャンセル」制御法に着想を得た、非線形フィードバックポリシーのクラスを最適化する。
論文 参考訳(メタデータ) (2022-12-02T18:54:23Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
ニューラルネットワークをパラメータ化した微分方程式として連続時間力学をモデル化するために、ニューラル常微分方程式(ニューラルODE)を用いる。
本稿では,一般非線形最適制御問題の解法としてニューラル・オードとして提案するニューラル・コントロール・ポリシーを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:19:26Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
本稿では,最適縮尺と対応する微分リャプノフ関数のニューラルネットワークモデルを提案する。
そのイノベーションは、学習ベースの制御フレームワークに対して、正式な堅牢性を保証することである。
論文 参考訳(メタデータ) (2021-10-02T00:28:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
離散時間系のダイナミクスにおける大きな不確実性を扱うことができる学習ベースの堅牢な予測制御アルゴリズムを提案する。
既存の学習に基づく予測制御アルゴリズムが大規模な不確実性が存在する場合の安全性を確保することができず、性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-16T17:47:02Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。