論文の概要: A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability
- arxiv url: http://arxiv.org/abs/2110.00693v1
- Date: Sat, 2 Oct 2021 00:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:03:05.751220
- Title: A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability
- Title(参考訳): 安定度を保証した学習制御のための神経収縮指標の理論的概要
- Authors: Hiroyasu Tsukamoto and Soon-Jo Chung and Jean-Jacques Slotine and
Chuchu Fan
- Abstract要約: 本稿では,最適縮尺と対応する微分リャプノフ関数のニューラルネットワークモデルを提案する。
そのイノベーションは、学習ベースの制御フレームワークに対して、正式な堅牢性を保証することである。
- 参考スコア(独自算出の注目度): 7.963506386866862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a theoretical overview of a Neural Contraction Metric
(NCM): a neural network model of an optimal contraction metric and
corresponding differential Lyapunov function, the existence of which is a
necessary and sufficient condition for incremental exponential stability of
non-autonomous nonlinear system trajectories. Its innovation lies in providing
formal robustness guarantees for learning-based control frameworks, utilizing
contraction theory as an analytical tool to study the nonlinear stability of
learned systems via convex optimization. In particular, we rigorously show in
this paper that, by regarding modeling errors of the learning schemes as
external disturbances, the NCM control is capable of obtaining an explicit
bound on the distance between a time-varying target trajectory and perturbed
solution trajectories, which exponentially decreases with time even under the
presence of deterministic and stochastic perturbation. These useful features
permit simultaneous synthesis of a contraction metric and associated control
law by a neural network, thereby enabling real-time computable and probably
robust learning-based control for general control-affine nonlinear systems.
- Abstract(参考訳): 本稿では, 最適収縮計量とそれに対応する微分リアプノフ関数のニューラルネットワークモデルであるニューラル収縮計量(ncm)の理論的概要について述べる。
その革新は、学習ベースの制御フレームワークに形式的な堅牢性を保証することにあり、コンベックス最適化を通じて学習システムの非線形安定性を研究するための分析ツールとして収縮理論を利用する。
特に, 学習スキームの誤差を外乱としてモデル化することにより, NCM制御は, 決定論的・確率的摂動の存在下においても時間とともに指数関数的に減少する時間変化対象軌跡と摂動解軌跡との距離の明示的境界を求めることができることを示す。
これらの有用な特徴により、ニューラルネットワークによる収縮計量と関連する制御法則の同時合成が可能となり、一般的な制御親和性非線形システムに対して、リアルタイムの計算可能でおそらくロバストな学習ベースの制御が可能になる。
関連論文リスト
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Synthesizing Neural Network Controllers with Closed-Loop Dissipativity Guarantees [0.6612847014373572]
植物のクラスは、不確実性と相互接続された線形時間不変系(LTI)と見なされる。
プラントの不確かさとニューラルネットワークの非線形性は、どちらも積分二次的制約を用いて記述される。
凸条件はプロジェクションベースのトレーニング手法で、解離性を保証するニューラルネットワークコントローラを合成するために用いられる。
論文 参考訳(メタデータ) (2024-04-10T22:15:28Z) - Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview [17.05002635077646]
収縮理論 (contraction theory) は、非自明(時間変化)非線形系の微分力学を研究するための解析ツールである。
その非線形安定解析は、線形行列の不等式として表される安定性条件を満たす適切な収縮計量を見つけるために沸騰する。
論文 参考訳(メタデータ) (2021-10-01T23:03:21Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Learning-based Adaptive Control via Contraction Theory [7.918886297003018]
パラメトリック不確実性を有する非線形システムのための新しいディープラーニングに基づく適応制御フレームワーク、Adaptive Neural Contraction Metric (aNCM) を提案する。
aNCMは、不確実性の下でシステムの軌道の安定性と指数有界性を保証する最適適応収縮メトリックのニューラルネットワークモデルを使用する。
論文 参考訳(メタデータ) (2021-03-04T12:19:52Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Neural Stochastic Contraction Metrics for Learning-based Control and
Estimation [13.751135823626493]
NSCMフレームワークにより、自律エージェントは最適な安定制御と推定ポリシーをリアルタイムで近似することができる。
これは、状態依存リカティ方程式、反復LQR、EKF、神経収縮など、既存の非線形制御と推定技術より優れている。
論文 参考訳(メタデータ) (2020-11-06T03:04:42Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Neural Contraction Metrics for Robust Estimation and Control: A Convex
Optimization Approach [6.646482960350819]
本稿では,ニューラル・コントラクト・メトリック(NCM)の概念を用いて,ロバストな非線形推定と制御のための新しいディープラーニングベースのフレームワークを提案する。
NCMは、最適な収縮距離を大域的に近似するために、ディープロング短期記憶リカレントニューラルネットワークを使用する。
そこで本稿では,NCMを用いた非線形システムの最適推定器と制御器の設計について述べる。
論文 参考訳(メタデータ) (2020-06-08T05:29:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。