論文の概要: 3D Transformer based on deformable patch location for differential
diagnosis between Alzheimer's disease and Frontotemporal dementia
- arxiv url: http://arxiv.org/abs/2309.03183v1
- Date: Wed, 6 Sep 2023 17:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 14:26:05.565835
- Title: 3D Transformer based on deformable patch location for differential
diagnosis between Alzheimer's disease and Frontotemporal dementia
- Title(参考訳): 変形性パッチ位置に基づく3次元トランスフォーマーによるアルツハイマー病と前頭側頭型認知症の鑑別診断
- Authors: Huy-Dung Nguyen and Micha\"el Cl\'ement and Boris Mansencal and
Pierrick Coup\'e
- Abstract要約: アルツハイマー病と前頭側頭葉認知症は重度の臨床症状を呈する神経変性疾患の一般的なタイプである。
変形可能なパッチ位置モジュールを用いた新規な3次元トランスフォーマーアーキテクチャーを提案し,アルツハイマー病と前頭側頭葉認知症の鑑別診断を改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alzheimer's disease and Frontotemporal dementia are common types of
neurodegenerative disorders that present overlapping clinical symptoms, making
their differential diagnosis very challenging. Numerous efforts have been done
for the diagnosis of each disease but the problem of multi-class differential
diagnosis has not been actively explored. In recent years, transformer-based
models have demonstrated remarkable success in various computer vision tasks.
However, their use in disease diagnostic is uncommon due to the limited amount
of 3D medical data given the large size of such models. In this paper, we
present a novel 3D transformer-based architecture using a deformable patch
location module to improve the differential diagnosis of Alzheimer's disease
and Frontotemporal dementia. Moreover, to overcome the problem of data
scarcity, we propose an efficient combination of various data augmentation
techniques, adapted for training transformer-based models on 3D structural
magnetic resonance imaging data. Finally, we propose to combine our
transformer-based model with a traditional machine learning model using brain
structure volumes to better exploit the available data. Our experiments
demonstrate the effectiveness of the proposed approach, showing competitive
results compared to state-of-the-art methods. Moreover, the deformable patch
locations can be visualized, revealing the most relevant brain regions used to
establish the diagnosis of each disease.
- Abstract(参考訳): アルツハイマー病と前頭側頭型認知症は、重なり合う臨床症状を呈する一般的な神経変性疾患であり、その鑑別診断は非常に困難である。
各疾患の診断には多くの取り組みがなされているが,多型差分診断の課題は積極的に検討されていない。
近年、トランスフォーマーベースのモデルは様々なコンピュータビジョンタスクで顕著な成功を収めている。
しかし、そのようなモデルの大きさを考えると、3D医療データが少ないため、病気の診断に使用されることは稀である。
本稿では,アルツハイマー病と前頭側頭側認知症との鑑別診断を改善するために,変形可能なパッチ位置モジュールを用いた新しい3次元トランスフォーマーアーキテクチャを提案する。
さらに,データ不足の問題を克服するために,3次元構造磁気共鳴イメージングデータを用いたトランスフォーマモデルトレーニングに適応した各種データ拡張手法の効率的な組み合わせを提案する。
最後に,本研究のトランスフォーマーモデルと,脳構造ボリュームを用いた従来の機械学習モデルを組み合わせて,利用可能なデータを活用することを提案する。
提案手法の有効性を実証し,最先端手法と比較して競争力のある結果を示した。
さらに、変形可能なパッチ位置を可視化し、各疾患の診断を確立するために使用される最も関連性の高い脳領域を明らかにする。
関連論文リスト
- Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
アルツハイマー病(英: Alzheimer's Disease、AD)は、記憶障害、執行機能障害、性格変化を特徴とする複雑な神経変性疾患である。
本研究では,臨床,認知,神経画像,脳波データを統合した高度なマルチモーダル分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-29T08:26:00Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
現在の構造イメージングは、主に疾患の検出に焦点をあてるが、その鑑別診断にはほとんど焦点を当てない。
本稿では,疾患検出と鑑別診断の両問題に対するディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-25T13:25:18Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
アルツハイマー病(AD)と軽度認知障害(MCI)の診断・バイオマーカー同定のための新しいテンソルベース多モード特徴選択と回帰法を提案する。
3つの画像モダリティを用いたADNIデータ解析における本手法の実用的利点について述べる。
論文 参考訳(メタデータ) (2022-09-23T02:17:27Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
前頭側頭性認知症とアルツハイマー病は2種類の認知症であり、互いに誤診しやすい。
2種類の認知症を区別することは、疾患特異的な介入と治療を決定するのに不可欠である。
医用画像処理分野におけるディープラーニングベースのアプローチの最近の発展は、多くのバイナリ分類タスクにおいて、最高のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-12T22:40:50Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。