論文の概要: Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems
- arxiv url: http://arxiv.org/abs/2411.05834v1
- Date: Wed, 06 Nov 2024 09:12:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:46.010739
- Title: Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems
- Title(参考訳): 組合せ最適化のためのグラフニューラルネットワークの評価と強化:最大独立集合問題における新しいアプローチと応用
- Authors: Chenchuhui Hu,
- Abstract要約: Graph Neural Networks (GNNs)は、コンビネーション最適化(CO)問題の解決における研究者の約束を示す。
本研究では,最大独立集合(MIS)問題の解法におけるGNNの有効性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Combinatorial optimization (CO) problems are challenging as the computation time grows exponentially with the input. Graph Neural Networks (GNNs) show promise for researchers in solving CO problems. This study investigates the effectiveness of GNNs in solving the maximum independent set (MIS) problem, inspired by the intriguing findings of Schuetz et al., and aimed to enhance this solver. Despite the promise shown by GNNs, some researchers observed discrepancies when reproducing the findings, particularly compared to the greedy algorithm, for instance. We reproduced Schuetz' Quadratic Unconstrained Binary Optimization (QUBO) unsupervised approach and explored the possibility of combining it with a supervised learning approach for solving MIS problems. While the QUBO unsupervised approach did not guarantee maximal or optimal solutions, it provided a solid first guess for post-processing techniques like greedy decoding or tree-based methods. Moreover, our findings indicated that the supervised approach could further refine the QUBO unsupervised solver, as the learned model assigned meaningful probabilities for each node as initial node features, which could then be improved with the QUBO unsupervised approach. Thus, GNNs offer a valuable method for solving CO problems by integrating learned graph structures rather than relying solely on traditional heuristic functions. This research highlights the potential of GNNs to boost solver performance by leveraging ground truth during training and using optimization functions to learn structural graph information, marking a pioneering step towards improving prediction accuracy in a non-autoregressive manner.
- Abstract(参考訳): 演算時間が指数関数的に増加するにつれて、組合せ最適化(CO)の問題は困難である。
グラフニューラルネットワーク(GNN)は、CO問題の解決における研究者の約束を示す。
本研究は,Schuetzらによる興味深い発見に触発されて,最大独立集合(MIS)問題の解法におけるGNNの有効性を検討した。
GNNが示した約束にもかかわらず、一部の研究者は、発見を再現する際の不一致を観察した。
疑似非拘束バイナリ最適化(QUBO)の教師なしアプローチを再現し,MIS問題を解決するための教師付き学習手法と組み合わせる可能性を検討した。
QUBOの教師なしアプローチでは、最大あるいは最適解は保証されなかったが、グリージー復号法やツリーベースの手法のような後処理技術について、確固たる第1の推測を提供した。
さらに,本手法は,各ノードの有意な確率を初期ノードの特徴として割り当てる学習モデルとして,QUBO非教師付き解法をさらに改良し,QUBO非教師付き解法により改善する可能性が示唆された。
したがって、GNNは従来のヒューリスティック関数にのみ依存するのではなく、学習したグラフ構造を統合することでCO問題を解決するための貴重な方法を提供する。
本研究は,非自己回帰的手法による予測精度向上に向けた先駆的なステップとして,学習中の真理を活かし,構造グラフ情報の学習に最適化関数を用いることにより,GNNの問題解決性能向上の可能性を強調した。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
本稿では,組合せ最適化(CO)問題を効率よく解くために,GNNのパワーを活用して,QRF-GNNと呼ぶ新しいアルゴリズムを提案する。
QUBO緩和による損失関数の最小化による教師なし学習に依存している。
実験の結果、QRF-GNNは既存の学習ベースアプローチを大幅に上回り、最先端の手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:34:35Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - Graph Q-Learning for Combinatorial Optimization [44.8086492019594]
グラフニューラルネットワーク(GNN)は,グラフデータの予測と推論の問題を解くのに有効であることが示されている。
本稿では,GNNを組合せ最適化問題に適用できることを示す。
論文 参考訳(メタデータ) (2024-01-11T01:15:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Learning Branching Heuristics from Graph Neural Networks [1.4660170768702356]
まず,確率論的手法を用いて設計した新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、AIで使用される古典的なバックトラッキングアルゴリズムの強化にGNNを適用する新しい方法を導入する。
論文 参考訳(メタデータ) (2022-11-26T00:01:01Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
本稿では,ノード,エッジ,あるいはその両方に情報をエンコードするグラフベースの問題を扱う新しいニューラル改善(NI)モデルを提案する。
提案モデルは,各地区の操作の選択を誘導する丘登頂に基づくアルゴリズムの基本的な構成要素として機能する。
論文 参考訳(メタデータ) (2022-06-01T10:35:29Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
我々は、ソリューションを生成するニューラルネットワークのトレーニングにデータを必要としないという、根本的に異なるアプローチを提案する。
特に、最適化問題をニューラルネットワークに還元し、データレストレーニングスキームを用いて、それらのパラメータが関心の構造をもたらすように、ネットワークのパラメータを洗練する。
論文 参考訳(メタデータ) (2022-03-15T19:21:31Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。