論文の概要: Neural Font Rendering
- arxiv url: http://arxiv.org/abs/2211.14802v2
- Date: Tue, 29 Nov 2022 07:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 12:17:04.382282
- Title: Neural Font Rendering
- Title(参考訳): ニューラルフォントのレンダリング
- Authors: Daniel Anderson, Ariel Shamir and Ohad Fried
- Abstract要約: フォントは、そのマルチスケールな性質をサポートする方法で、まだディープラーニングアーキテクチャと統合されていない。
本稿では,複数のサイズでグリフを生成可能なネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 14.123343941824132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning techniques and applications have
revolutionized artistic creation and manipulation in many domains (text,
images, music); however, fonts have not yet been integrated with deep learning
architectures in a manner that supports their multi-scale nature. In this work
we aim to bridge this gap, proposing a network architecture capable of
rasterizing glyphs in multiple sizes, potentially paving the way for easy and
accessible creation and manipulation of fonts.
- Abstract(参考訳): 近年のディープラーニング技術や応用の進歩は、多くの領域(テキスト、画像、音楽)における芸術的創造と操作に革命をもたらしたが、フォントは、そのマルチスケールな性質をサポートする方法で、まだディープラーニングアーキテクチャと統合されていない。
本研究は,複数サイズのグリフをラスタ化可能なネットワークアーキテクチャを提案し,フォントの作成と操作を容易にすることを目的としている。
関連論文リスト
- VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
本稿では,VQGANベースのフレームワーク(VQ-Font)を提案する。
具体的には、コードブック内でフォントトークンをカプセル化するために、VQGANを事前訓練する。その後、VQ-Fontは、合成したグリフをコードブックで洗練し、合成されたストロークと実世界のストロークのドメインギャップをなくす。
論文 参考訳(メタデータ) (2023-08-27T06:32:20Z) - Stroke-based Rendering: From Heuristics to Deep Learning [0.17188280334580194]
近年のディープラーニング手法の発展は,ストロークベースの絵画と画素写真生成のギャップを埋めるのに役立つ。
我々は,ストロークベースのレンダリングアルゴリズムにおける共通課題とアプローチについて,構造化された紹介と理解を提供することを目指している。
論文 参考訳(メタデータ) (2022-12-30T05:34:54Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
Diff-Fontという拡散モデルに基づく新しいワンショットフォント生成手法を提案する。
提案するモデルは,フォントライブラリ全体を生成することを目的として,参照として1つのサンプルのみを与える。
十分に訓練されたDiff-Fontは、フォントギャップやフォントのバリエーションに対して堅牢であるだけでなく、難しい文字生成において有望なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-12-12T13:51:50Z) - FontNet: Closing the gap to font designer performance in font synthesis [3.991334489146843]
本稿では,フォント間の距離がフォント類似度と直接対応するような埋め込み空間において,フォントスタイルの分離を学習するFontNetというモデルを提案する。
我々は,任意の言語システムに適用可能なネットワークアーキテクチャと訓練手順を設計し,高解像度フォント画像を生成する。
論文 参考訳(メタデータ) (2022-05-13T08:37:10Z) - DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality
Learning [21.123297001902177]
本稿では,ベクトルグリフを生成するための新しい手法であるDeepVecFontを提案する。
まず、フォントのイメージ・アスペクトとシーケンス・アスペクトの両特徴を利用してベクトルグリフを合成する双対モダリティ学習戦略を設計する。
第2に、非構造化データ(例えばベクトルグリフ)をランダムにサンプリングして、生成した構造化データのガイダンスの下でさらに洗練された最適なデータを得る、新しい生成パラダイムを提供する。
論文 参考訳(メタデータ) (2021-10-13T12:57:19Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
タイポグラフィー解析とフォント再構成を行う深層生成モデルを提案する。
このアプローチによって、効果的にモデル化できるキャラクタの種類を大規模にスケールアップすることが可能になります。
多くの言語の文字タイプを表す様々なデータセット上でフォント再構成のタスクを評価する。
論文 参考訳(メタデータ) (2021-09-10T20:37:43Z) - Font Completion and Manipulation by Cycling Between Multi-Modality
Representations [113.26243126754704]
中間表現としてグラフを用いた2次元グラフィックオブジェクトとしてフォントグリフの生成を探求する。
我々は、画像エンコーダと画像の間のグラフで、モダリティサイクルのイメージ・ツー・イメージ構造を定式化する。
本モデルでは,画像から画像までのベースラインと,それ以前のグリフ補完手法よりも改善された結果を生成する。
論文 参考訳(メタデータ) (2021-08-30T02:43:29Z) - Learning Perceptual Manifold of Fonts [7.395615703126767]
本稿では,フォント生成モデルの潜在空間における知覚的調整を可視化するために,フォントの知覚多様体を提案する。
本研究における従来のユーザインタフェースとは対照的に,フォント探索型ユーザインタフェースは,指定されたユーザ嗜好に対して効率的かつ有効である。
論文 参考訳(メタデータ) (2021-06-17T01:22:52Z) - A Multi-Implicit Neural Representation for Fonts [79.6123184198301]
エッジやコーナーのようなフォント固有の不連続性は、ニューラルネットワークを使って表現することが難しい。
そこで我々は,フォントを文順に表現するためのtextitmulti-implicitsを導入する。
論文 参考訳(メタデータ) (2021-06-12T21:40:11Z) - Few-Shot Font Generation with Deep Metric Learning [33.12829580813688]
提案するフレームワークは、スタイルエンコーダにディープメトリック学習を導入している。
白黒フォントと形状識別フォントのデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2020-11-04T10:12:10Z) - Free-Form Image Inpainting via Contrastive Attention Network [64.05544199212831]
画像の塗装作業では、複雑なパターンを形成する画像のどこにでも、どんな形でもマスクが現れる。
エンコーダはこの複雑な状況下でこのような強力な表現を捕捉することは困難である。
本稿では,ロバスト性と一般化性を改善するための自己教師型シームズ推論ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-29T14:46:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。