Quasiparticles of Decoherence Processes in Open Quantum Many-Body
Systems: Incoherentons
- URL: http://arxiv.org/abs/2211.14991v2
- Date: Fri, 22 Dec 2023 07:06:11 GMT
- Title: Quasiparticles of Decoherence Processes in Open Quantum Many-Body
Systems: Incoherentons
- Authors: Taiki Haga, Masaya Nakagawa, Ryusuke Hamazaki, Masahito Ueda
- Abstract summary: We find that hitherto unrecognized quasiparticles -- incoherentons -- describe a coherent-to-incoherent transition in eigenmodes of a Liouvillian superoperator.
We demonstrate the existence of incoherentons in a lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons are deconfined.
- Score: 8.329456268842227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The relaxation dynamics of an open quantum system is determined by the
competition between the coherent Hamiltonian dynamics of a system and the
dissipative dynamics due to interactions with environments. It is therefore of
fundamental interest to understand the transition from the coherent to
incoherent regimes. We find that hitherto unrecognized quasiparticles --
incoherentons -- describe this coherent-to-incoherent transition in eigenmodes
of a Liouvillian superoperator that governs the dynamics of an open quantum
many-body system. Here, an incoherenton is defined as an interchain bound state
in an auxiliary ladder system that represents the density matrix of a system.
The Liouvillian eigenmodes are classified into groups with different decay
rates that reflect the number of incoherentons involved therein. We also
introduce a spectral gap -- quantum coherence gap -- that separates the
different groups of eigenmodes. We demonstrate the existence of incoherentons
in a lattice boson model subject to dephasing, and show that the quantum
coherence gap closes when incoherentons are deconfined, which signals a
dynamical transition from incoherent relaxation with exponential decay to
coherent oscillatory relaxation. Furthermore, we discuss how the decoherence
dynamics of quantum many-body systems can be understood in terms of the
generation, localization, and diffusion of incoherentons.
Related papers
- Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Reaction-limited quantum reaction-diffusion dynamics [0.0]
We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice.
By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference play a crucial role in these systems.
arXiv Detail & Related papers (2022-09-20T15:14:52Z) - Entangled multiplets and unusual spreading of quantum correlations in a
continuously monitored tight-binding chain [0.0]
We analyze the dynamics of entanglement in a paradigmatic noninteracting system subject to continuous monitoring of the local densities.
Results shed new light onto the behavior of correlations in quantum dynamics and further show that these may be enhanced by a (weak) continuous monitoring process.
arXiv Detail & Related papers (2022-06-15T20:36:08Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a
Quantum Quench in a Driven-Dissipative Kitaev Chain [0.0]
We show that relaxation of driven-dissipative systems after a quantum quench can be determined by a maximum entropy ensemble.
We show that these results apply to broad classes of noninteracting fermionic models.
arXiv Detail & Related papers (2022-03-28T08:59:58Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Glassy quantum dynamics of disordered Ising spins [0.0]
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder.
Numerically, we confirm that glassy behavior persists for finite system sizes and sufficiently strong disorder.
arXiv Detail & Related papers (2021-04-01T09:08:27Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.