論文の概要: Lightweight and Flexible Deep Equilibrium Learning for CSI Feedback in
FDD Massive MIMO
- arxiv url: http://arxiv.org/abs/2211.15079v2
- Date: Mon, 5 Jun 2023 13:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 03:55:23.236686
- Title: Lightweight and Flexible Deep Equilibrium Learning for CSI Feedback in
FDD Massive MIMO
- Title(参考訳): FDD大規模MIMOにおけるCSIフィードバックのための軽量で柔軟な深度平衡学習
- Authors: Yifan Ma, Wentao Yu, Xianghao Yu, Jun Zhang, Shenghui Song, Khaled B.
Letaief
- Abstract要約: 広帯域多重出力(MIMO)システムでは、ダウンリンクチャネル状態情報(CSI)をベースステーション(BS)に送信する必要がある。
本稿では,深層平衡モデルを用いた軽量で柔軟な深層学習に基づくCSIフィードバック手法を提案する。
- 参考スコア(独自算出の注目度): 13.856867175477042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In frequency-division duplexing (FDD) massive multiple-input multiple-output
(MIMO) systems, downlink channel state information (CSI) needs to be sent back
to the base station (BS) by the users, which causes prohibitive feedback
overhead. In this paper, we propose a lightweight and flexible deep
learning-based CSI feedback approach by capitalizing on deep equilibrium
models. Different from existing deep learning-based methods that stack multiple
explicit layers, we propose an implicit equilibrium block to mimic the behavior
of an infinite-depth neural network. In particular, the implicit equilibrium
block is defined by a fixed-point iteration and the trainable parameters in
different iterations are shared, which results in a lightweight model.
Furthermore, the number of forward iterations can be adjusted according to
users' computation capability, enabling a flexible accuracy-efficiency
trade-off. Simulation results will show that the proposed design obtains a
comparable performance as the benchmarks but with much-reduced complexity and
permits an accuracy-efficiency trade-off at runtime.
- Abstract(参考訳): 周波数分割多重化 (fdd) システムでは、ダウンリンクチャネル状態情報 (csi) をユーザによってベースステーション (bs) に送信する必要があるため、制限的なフィードバックオーバーヘッドが発生する。
本稿では,深層平衡モデルを用いて,軽量でフレキシブルな深層学習に基づくcsiフィードバック手法を提案する。
複数の明示的な層を積み重ねる既存のディープラーニング手法と異なり、無限深層ニューラルネットワークの振る舞いを模倣する暗黙の平衡ブロックを提案する。
特に、暗黙の平衡ブロックは固定点反復によって定義され、異なる反復における訓練可能なパラメータは共有され、結果として軽量モデルとなる。
さらに、ユーザの計算能力に応じて前方イテレーションの数を調整できるため、柔軟な精度と効率のトレードオフが可能になる。
シミュレーションの結果,提案手法はベンチマークに匹敵する性能が得られるが,複雑性は少なく,実行時に精度と効率のトレードオフが得られることがわかった。
関連論文リスト
- SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBaは、単純さのバイアスを注入することによって、深いRLでパラメータをスケールアップするように設計されたアーキテクチャである。
SimBaでパラメータをスケールアップすることで、オフポリシー、オンポリシー、アン教師なしメソッドを含む様々なディープRLアルゴリズムのサンプル効率が一貫して改善される。
論文 参考訳(メタデータ) (2024-10-13T07:20:53Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
圧縮センシング(CS)は、従来のサンプリング法よりも少ない測定値を用いてスパース信号の回復を可能にする技術である。
我々はCSを用いた自然画像再構成のための解釈可能かつ簡潔なニューラルネットワークモデルを構築した。
MsDC-DEQ-Netと呼ばれるこのモデルは、最先端のネットワークベースの手法と比較して、競争力のある性能を示す。
論文 参考訳(メタデータ) (2024-01-05T16:25:58Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
分散機械学習(ML)の鍵となる技術として、フェデレートラーニング(FL)が登場した。
まず、システムパラメータが学習性能に与える影響を捉えるために、長方形のスケジューリングステップと関数を定式化する。
我々の分析は、デバイストレーニング変数と非同期スケジューリング決定の協調的影響に光を当てている。
論文 参考訳(メタデータ) (2023-05-22T21:39:38Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Learning Quantization in LDPC Decoders [14.37550972719183]
均一雑音の付加として量子化効果を模倣する浮動小数点代理モデルを提案する。
次に、深層学習に基づく手法を適用し、メッセージビット幅を最適化する。
平均メッセージ量子化ビット幅3.1ビットにおける浮動小数点復号の0.2dB以内の誤り率性能を報告する。
論文 参考訳(メタデータ) (2022-08-10T07:07:54Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
従来の線形最小平均二乗誤差(LMMSE)アーキテクチャ上に構築したML強化MU-MIMO受信機を提案する。
cnnはチャネル推定誤差の2次統計量の近似を計算するために用いられる。
CNNベースのデマッパーは、多数の周波数分割多重記号とサブキャリアを共同で処理する。
論文 参考訳(メタデータ) (2020-12-15T09:55:37Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。