Quantum Alternating Operator Ansatz for Solving the Minimum Exact Cover
Problem
- URL: http://arxiv.org/abs/2211.15266v1
- Date: Mon, 28 Nov 2022 12:45:52 GMT
- Title: Quantum Alternating Operator Ansatz for Solving the Minimum Exact Cover
Problem
- Authors: Sha-Sha Wang, Hai-Ling Liu, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen
- Abstract summary: We adopt quantum alternating operator ansatz (QAOA+) to solve minimum exact cover (MEC) problem.
The numerical results show that the solution can be obtained with high probability when level $p$ of the algorithm is low.
We also optimize the quantum circuit by removing single-qubit rotating gates $R_Z$.
- Score: 4.697039614904225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The minimum exact cover (MEC) is a common combinatorial optimization problem,
with wide applications in tail-assignment and vehicle routing. In this paper,
we adopt quantum alternating operator ansatz (QAOA+) to solve MEC problem. In
detail, to obtain a trivial feasible solution, we first transform MEC into a
constrained optimization problem with two objective functions. Then, we adopt
the linear weighted sum method to solve the above constrained optimization
problem and construct the corresponding target Hamiltonian. Finally, to improve
the performance of this algorithm, we adopt parameters fixing strategy to
simulate, where the experimental instances are 6, 8, and 10 qubits. The
numerical results show that the solution can be obtained with high probability
when level $p$ of the algorithm is low. Besides, we optimize the quantum
circuit by removing single-qubit rotating gates $R_Z$. We found that the number
of quantum gates is reduced by $np$ for $p$-level optimized circuit.
Furthermore, $p$-level optimized circuit only needs $p$ parameters, which can
achieve an experimental effect similar to original circuit with $2p$
parameters.
Related papers
- A Multilevel Approach For Solving Large-Scale QUBO Problems With Noisy Hybrid Quantum Approximate Optimization [3.3493770627144004]
We experimentally test how existing quantum processing units (QPUs) perform as subsolvers within a multilevel strategy.
We find approximate solutions to $10$ instances of fully connected $82$-qubit Sherrington-Kirkpatrick graphs.
We observe that quantum optimization results are competitive regarding the quality of solutions compared to classicals.
arXiv Detail & Related papers (2024-08-14T20:06:32Z) - Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping [3.47862118034022]
Noise-Directed Remapping (NDAR) is a algorithm for approximately solving binary optimization problems by leveraging certain types of noise.
We consider access to a noisy quantum processor with dynamics that features a global attractor state.
Our algorithm bootstraps the noise attractor state by iteratively gauge-transforming the cost-function Hamiltonian in a way that transforms the noise attractor into higher-quality solutions.
arXiv Detail & Related papers (2024-04-01T18:28:57Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A quantum central path algorithm for linear optimization [5.450016817940232]
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
arXiv Detail & Related papers (2023-11-07T13:26:20Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
We study unsupervised Machine Learning approaches for setting parameters without optimization.
We showcase them within Recursive-QAOA up to depth $3$ where the number of QAOA parameters used per iteration is limited to $3$.
We obtain similar performances to the case where we extensively optimize the angles, hence saving numerous circuit calls.
arXiv Detail & Related papers (2022-02-18T19:55:42Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.