論文の概要: The Myth of Culturally Agnostic AI Models
- arxiv url: http://arxiv.org/abs/2211.15271v2
- Date: Tue, 29 Nov 2022 11:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 12:06:58.657609
- Title: The Myth of Culturally Agnostic AI Models
- Title(参考訳): 文化的に無知なAIモデルの神話
- Authors: Eva Cetinic
- Abstract要約: この論文は、文化的なAIモデルと文化的な特定のAIモデルへの取り組みの長所と短所に取り組みます。
本稿では,リスク軽減と文化的特異性とのトレードオフを示す出力の記憶とバイアスのいくつかの例について論じる。
- 参考スコア(独自算出の注目度): 1.7259824817932292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper discusses the potential of large vision-language models as objects
of interest for empirical cultural studies. Focusing on the comparative
analysis of outputs from two popular text-to-image synthesis models, DALL-E 2
and Stable Diffusion, the paper tries to tackle the pros and cons of striving
towards culturally agnostic vs. culturally specific AI models. The paper
discusses several examples of memorization and bias in generated outputs which
showcase the trade-off between risk mitigation and cultural specificity, as
well as the overall impossibility of developing culturally agnostic models.
- Abstract(参考訳): 本稿では,経験的文化研究の目的として,大規模視覚言語モデルの可能性について考察する。
dall-e 2とstable diffusionという2つの一般的なテキストから画像への合成モデルからの出力の比較分析に注目し,文化に無依存なaiモデルに対する努力の長所と短所について考察した。
本稿では、リスク緩和と文化的特異性とのトレードオフを示す出力の記憶とバイアスの例と、文化的非依存モデルの開発における全体的な不可能性について論じる。
関連論文リスト
- Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
大規模言語モデル(LLM)の社会的・文化的変動を評価するためのデータセット「CIVICS:文化インフォームド・バリュース・インクルーシブ・コーパス・フォー・ソシエティ・インパクト」
我々は、LGBTQIの権利、社会福祉、移民、障害権利、代理など、特定の社会的に敏感なトピックに対処する、手作りの多言語プロンプトのデータセットを作成します。
論文 参考訳(メタデータ) (2024-05-22T20:19:10Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Cultural Bias and Cultural Alignment of Large Language Models [0.9374652839580183]
広く使われている5つの大言語モデルに対して,文化的偏見の分散評価を行う。
全てのモデルは、英語とプロテスタントのヨーロッパ諸国に似た文化的価値を示す。
生成AIの出力における文化的バイアスを軽減するために,文化的なプロンプトと継続的な評価を用いることを提案する。
論文 参考訳(メタデータ) (2023-11-23T16:45:56Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Navigating Cultural Chasms: Exploring and Unlocking the Cultural POV of Text-To-Image Models [32.99865895211158]
テキスト・トゥ・イメージ(TTI)モデルに埋め込まれた文化的知覚を,3層にまたがる文化を特徴付けることによって探求する。
本稿では,CLIP空間を用いた本質的な評価を含む総合的な評価手法を提案する。
我々の研究を促進するために、CulText2Iデータセットを導入しました。
論文 参考訳(メタデータ) (2023-10-03T10:13:36Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z) - On the Cultural Gap in Text-to-Image Generation [75.69755281031951]
テキスト・トゥ・イメージ(T2I)生成における課題のひとつは、トレーニングデータに存在する文化ギャップの意図しない反映である。
クロスカルチャー画像を生成するT2Iモデルの能力を体系的に評価するベンチマークは存在しない。
本稿では,モデルが対象文化にどの程度適しているかを評価するため,包括的評価基準付きChallenging Cross-Cultural (C3)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-06T13:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。