Topologically faithful image segmentation via induced matching of
persistence barcodes
- URL: http://arxiv.org/abs/2211.15272v1
- Date: Mon, 28 Nov 2022 12:57:57 GMT
- Title: Topologically faithful image segmentation via induced matching of
persistence barcodes
- Authors: Nico Stucki, Johannes C. Paetzold, Suprosanna Shit, Bjoern Menze,
Ulrich Bauer
- Abstract summary: We propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation.
We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting.
We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations.
- Score: 2.575096947175758
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image segmentation is a largely researched field where neural networks find
vast applications in many facets of technology. Some of the most popular
approaches to train segmentation networks employ loss functions optimizing
pixel-overlap, an objective that is insufficient for many segmentation tasks.
In recent years, their limitations fueled a growing interest in topology-aware
methods, which aim to recover the correct topology of the segmented structures.
However, so far, none of the existing approaches achieve a spatially correct
matching between the topological features of ground truth and prediction.
In this work, we propose the first topologically and feature-wise accurate
metric and loss function for supervised image segmentation, which we term Betti
matching. We show how induced matchings guarantee the spatially correct
matching between barcodes in a segmentation setting. Furthermore, we propose an
efficient algorithm to compute the Betti matching of images. We show that the
Betti matching error is an interpretable metric to evaluate the topological
correctness of segmentations, which is more sensitive than the well-established
Betti number error. Moreover, the differentiability of the Betti matching loss
enables its use as a loss function. It improves the topological performance of
segmentation networks across six diverse datasets while preserving the
volumetric performance. Our code is available in
https://github.com/nstucki/Betti-matching.
Related papers
- Topology-Preserving Image Segmentation with Spatial-Aware Persistent Feature Matching [14.569312113899043]
We propose an effective and efficient Spatial-Aware Topological Loss Function that further leverages the information in the original spatial domain of the image.
Experiments on images of various types of tubular structures show that the proposed method has superior performance in improving the topological accuracy of the segmentation.
arXiv Detail & Related papers (2024-12-03T01:38:15Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Efficient Betti Matching Enables Topology-Aware 3D Segmentation via Persistent Homology [2.0767088099870006]
We propose an efficient algorithm for the calculation of the Betti matching, which can be used as a loss function to train segmentation networks.
A major challenge is the computational cost of computing persistence barcodes.
We propose a new, highly optimized implementation of Betti matching, implemented in C++ together with a python interface.
arXiv Detail & Related papers (2024-07-05T17:44:08Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - BuyTheDips: PathLoss for improved topology-preserving deep
learning-based image segmentation [1.8899300124593648]
We propose a new deep image segmentation method which relies on a new leakage loss: the Pathloss.
Our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures.
arXiv Detail & Related papers (2022-07-23T07:19:30Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
arXiv Detail & Related papers (2021-05-11T13:21:25Z) - The Spatially-Correlative Loss for Various Image Translation Tasks [69.62228639870114]
We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency.
Previous methods attempt this by using pixel-level cycle-consistency or feature-level matching losses.
We show distinct improvement over baseline models in all three modes of unpaired I2I translation: single-modal, multi-modal, and even single-image translation.
arXiv Detail & Related papers (2021-04-02T02:13:30Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.