Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic
- URL: http://arxiv.org/abs/2507.23763v2
- Date: Tue, 05 Aug 2025 10:17:23 GMT
- Title: Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic
- Authors: Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz,
- Abstract summary: In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy.<n>We propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($chi$)<n>Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.
- Score: 19.10529570801906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.
Related papers
- Pitfalls of topology-aware image segmentation [81.19923502845441]
We identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts, and inappropriate use of evaluation metrics.<n>We propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
arXiv Detail & Related papers (2024-12-19T08:11:42Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.<n>Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.<n>We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
arXiv Detail & Related papers (2024-04-29T09:27:31Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - Pairwise-Constrained Implicit Functions for 3D Human Heart Modelling [60.56741715207466]
We introduce a pairwise-constrained SDF approach that models the heart as a set of interdependent SDFs.<n>Our method significantly improves inner structure accuracy over single-SDF, UDF-based, voxel-based, and segmentation-based reconstructions.
arXiv Detail & Related papers (2023-07-16T10:07:15Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Topology-Preserving Segmentation Network: A Deep Learning Segmentation
Framework for Connected Component [7.95119530218428]
In medical imaging, the topology of the structure, such as the kidney or lung, is usually known.
A it topology-preserving segmentation network (TPSN) is trained to give an accurate segmentation result.
TPSN is a deformation-based model that yields a deformation map through a UNet.
A multi-scale TPSN is developed in this paper that incorporates multi-level information of images to produce more precise segmentation results.
arXiv Detail & Related papers (2022-02-27T09:56:33Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
We propose a novel topology-aware network (TA-Net) to accurately separate densely clustered and severely deformed glands.
TA-Net has a multitask learning architecture and enhances the generalization of gland segmentation.
It achieves state-of-the-art performance on the two datasets.
arXiv Detail & Related papers (2021-10-27T17:10:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.