論文の概要: Improving Proactive Dialog Agents Using Socially-Aware Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2211.15359v2
- Date: Thu, 22 Jun 2023 08:55:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 17:51:09.883280
- Title: Improving Proactive Dialog Agents Using Socially-Aware Reinforcement
Learning
- Title(参考訳): ソーシャルアウェア強化学習を用いたプロアクティブ対話エージェントの改善
- Authors: Matthias Kraus, Nicolas Wagner, Ron Riekenbrauck and Wolfgang Minker
- Abstract要約: 適切に定義された積極的行動は、人間と機械の協調を改善する。
ダイアログにソーシャル機能とタスク関連機能の両方を含む新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.9011896000134825
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The next step for intelligent dialog agents is to escape their role as silent
bystanders and become proactive. Well-defined proactive behavior may improve
human-machine cooperation, as the agent takes a more active role during
interaction and takes off responsibility from the user. However, proactivity is
a double-edged sword because poorly executed pre-emptive actions may have a
devastating effect not only on the task outcome but also on the relationship
with the user. For designing adequate proactive dialog strategies, we propose a
novel approach including both social as well as task-relevant features in the
dialog. Here, the primary goal is to optimize proactive behavior so that it is
task-oriented - this implies high task success and efficiency - while also
being socially effective by fostering user trust. Including both aspects in the
reward function for training a proactive dialog agent using reinforcement
learning showed the benefit of our approach for more successful human-machine
cooperation.
- Abstract(参考訳): インテリジェントダイアログエージェントの次のステップは、サイレントな傍観者としての役割を逃れて、積極的になることである。
適切に定義された積極的行動は、インタラクション中にエージェントがよりアクティブな役割を担い、ユーザから責任を奪うため、人間と機械の協調を改善する可能性がある。
しかし, プロアクティベーションは, 作業結果だけでなく, ユーザとの関係にも悪影響を及ぼす可能性があるため, 両刃の剣である。
適切なプロアクティブなダイアログ戦略を設計するために,ダイアログの社会的特徴とタスク関連機能の両方を含む新しいアプローチを提案する。
ここでの第一の目的は、積極的行動の最適化であり、タスク指向であり、これは高いタスクの成功と効率を意味する。
強化学習を用いたプロアクティブ・ダイアログエージェントを訓練するための報酬関数の両側面を含めると,より良好な人間と機械の連携が期待できる。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents [11.118991548784459]
大規模言語モデル(LLM)ベースのエージェントは、ますます外部環境との対話に使われている。
現在のフレームワークでは、これらのエージェントがユーザと対話してタスクの詳細を調整できない。
この作業では、タスク指向の"会話型"エージェントを構築する上で不可欠なスキルを組み合わせた、新しいフレームワークであるReSpActを紹介します。
論文 参考訳(メタデータ) (2024-11-01T15:57:45Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - Does It Affect You? Social and Learning Implications of Using
Cognitive-Affective State Recognition for Proactive Human-Robot Tutoring [4.384546153204966]
本研究は,ロボット教師が学生の認知影響状態をどう活用するかを,プロアクティブ・チューリング・ダイアログのトリガーとして検討する。
混乱の兆候を検知した後の積極的な行動開始が,生徒の集中とエージェントへの信頼を高めるかを検討した。
その結果,高い積極的行動が信頼を損なうことが示唆された。
論文 参考訳(メタデータ) (2022-12-20T15:31:58Z) - Aligning to Social Norms and Values in Interactive Narratives [89.82264844526333]
我々は、インタラクティブな物語やテキストベースのゲームにおいて、社会的に有益な規範や価値観に沿って行動するエージェントを作成することに注力する。
我々は、特別な訓練を受けた言語モデルに存在する社会的コモンセンス知識を用いて、社会的に有益な値に整合した行動にのみ、その行動空間を文脈的に制限するGAALADエージェントを紹介した。
論文 参考訳(メタデータ) (2022-05-04T09:54:33Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
インタラクティブな環境下でプロアクティブなポリシーを学習できるI-Proという新しいソリューションを提案する。
具体的には,4つの要因からなる学習目標重みを通じてトレードオフを学習する。
実験の結果,I-Proは,有効性と解釈性において,ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-04-07T14:11:31Z) - Interactive Inverse Reinforcement Learning for Cooperative Games [7.257751371276486]
我々は、潜在的に最適でないパートナーと効果的に協力することを学ぶことができるAIエージェントを設計する問題について研究する。
この問題は、協調的な2エージェントのマルコフ決定プロセスとしてモデル化されている。
学習者の方針が遷移関数に有意な影響を及ぼす場合、報酬関数を効率的に学習できることが示される。
論文 参考訳(メタデータ) (2021-11-08T18:24:52Z) - What Does The User Want? Information Gain for Hierarchical Dialogue
Policy Optimisation [3.1433893853959605]
強化学習(RL)による最適化は、非効率性と不安定性のサンプリングに影響を受けやすい。
本稿では,この問題に対処するための情報ゲインに基づく本質的な報酬の利用を提案する。
FeudalGainと呼ばれる我々のアルゴリズムは、PyDialフレームワークのほとんどの環境で最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-15T07:21:26Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z) - Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems [58.724629408229205]
本稿では、従来の教師あり学習とシミュレータなしの逆学習法を用いて、最先端のRL法に匹敵する性能を実現する方法を示す。
我々の主な目的は、教師あり学習で強化学習に勝ることではなく、タスク指向対話システムの最適化における強化学習と教師あり学習の役割を再考する価値を示すことである。
論文 参考訳(メタデータ) (2020-09-21T12:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。