論文の概要: Content-Based Medical Image Retrieval with Opponent Class Adaptive
Margin Loss
- arxiv url: http://arxiv.org/abs/2211.15371v1
- Date: Tue, 22 Nov 2022 17:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:08:03.179801
- Title: Content-Based Medical Image Retrieval with Opponent Class Adaptive
Margin Loss
- Title(参考訳): 反対クラス適応マージン損失を用いたコンテンツベース医用画像検索
- Authors: \c{S}aban \"Ozt\"urk, Emin Celik, Tolga Cukur
- Abstract要約: 本稿では,OCAM(Opponent Class Adaptive Margin)損失に基づく医用画像リポジトリの自動クエリのためのトリプルトラーニング手法を提案する。
OCAMのCBIR性能を3つの公開データベース上での表現学習における最先端の損失関数と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Broadspread use of medical imaging devices with digital storage has paved the
way for curation of substantial data repositories. Fast access to image samples
with similar appearance to suspected cases can help establish a consulting
system for healthcare professionals, and improve diagnostic procedures while
minimizing processing delays. However, manual querying of large data
repositories is labor intensive. Content-based image retrieval (CBIR) offers an
automated solution based on dense embedding vectors that represent image
features to allow quantitative similarity assessments. Triplet learning has
emerged as a powerful approach to recover embeddings in CBIR, albeit
traditional loss functions ignore the dynamic relationship between opponent
image classes. Here, we introduce a triplet-learning method for automated
querying of medical image repositories based on a novel Opponent Class Adaptive
Margin (OCAM) loss. OCAM uses a variable margin value that is updated
continually during the course of training to maintain optimally discriminative
representations. CBIR performance of OCAM is compared against state-of-the-art
loss functions for representational learning on three public databases
(gastrointestinal disease, skin lesion, lung disease). Comprehensive
experiments in each application domain demonstrate the superior performance of
OCAM against baselines.
- Abstract(参考訳): デジタルストレージを用いた医療画像装置の広帯域利用は、実質的なデータリポジトリのキュレーションの道を開いた。
疑わしいケースに類似した画像サンプルへの迅速なアクセスは、医療専門家のためのコンサルティングシステムを確立し、処理遅延を最小限にしながら診断手順を改善するのに役立つ。
しかし、大規模なデータリポジトリの手動クエリは手間がかかります。
コンテンツベース画像検索(cbir)は、画像の特徴を表現し、定量的類似度評価を可能にする高密度埋め込みベクトルに基づく自動ソリューションを提供する。
トリプルト学習はCBIRの埋め込みを回復するための強力なアプローチとして登場したが、従来の損失関数は反対の画像クラス間の動的関係を無視している。
本稿では,OCAM(Opponent Class Adaptive Margin)損失に基づく医用画像リポジトリの自動クエリのための3重学習手法を提案する。
ocamは、最適な判別表現を維持するためにトレーニング中に継続的に更新される可変マージン値を使用する。
OCAMのCBIR性能は,3つの公的データベース(消化管疾患,皮膚病変,肺疾患)上での表現学習における最先端の損失関数と比較した。
各アプリケーション領域における総合的な実験は、OCAMのベースラインに対する優れた性能を示す。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Adaptive Correspondence Scoring for Unsupervised Medical Image Registration [9.294341405888158]
既存の手法では、画像再構成を主要な監視信号として用いている。
そこで本研究では,学習中の誤り残差を対応スコアマップで再重み付けする適応フレームワークを提案する。
我々のフレームワークは、量的にも質的にも、他の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2023-12-01T01:11:22Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
脳画像合成のための新しい自己教師型学習(FedMed)を提案する。
アフィン変換損失(ATL)は、プライバシー法に違反することなく、ひどく歪んだ画像を使用するように定式化された。
提案手法は, 極めて不整合かつ不整合なデータ設定下での合成結果の品質の両方において, 高度な性能を示す。
論文 参考訳(メタデータ) (2022-01-29T13:45:39Z) - Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images [4.211466076086617]
データの不均衡問題に対処するために、一級分類が注目を集めている。
本稿では,コンパクトな特徴を学習するための新しい深層学習手法を提案する。
提案手法は,各クラスに関連するより関連性の高い特徴を学習し,多数派と少数派のサンプルを識別しやすくする。
論文 参考訳(メタデータ) (2021-11-20T15:25:24Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。