論文の概要: A Trust-Guided Approach to MR Image Reconstruction with Side Information
- arxiv url: http://arxiv.org/abs/2501.03021v2
- Date: Thu, 15 May 2025 04:15:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 14:06:35.836147
- Title: A Trust-Guided Approach to MR Image Reconstruction with Side Information
- Title(参考訳): 側方情報を用いたMR画像再構成のための信頼誘導手法
- Authors: Arda Atalık, Sumit Chopra, Daniel K. Sodickson,
- Abstract要約: Trust- Guided Variational Network (TGVN)は、MRI最適化問題にサイド情報を効果的に統合するエンドツーエンドのディープラーニングフレームワークである。
TGVNは、困難な加速レベルでも微妙な病理特性を維持しながら、優れた画像品質を実現する。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust- Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.
- Abstract(参考訳): MRIスキャン時間の短縮は、患者のケアを改善し、医療費を下げる。
多くの加速法は、粗いk空間データから、不測あるいは不定条件の線形逆問題(LIP)を通して、診断品質の高い画像を再構成するように設計されている。
得られたあいまいさに対処するためには、事前知識を最適化問題、例えば、正規化の形で組み込むことが不可欠である。
医用画像であまり使われていない別の事前知識形態は、現在の取得以外の情報源から得られる手軽に利用できる補助データ(サイド情報)である。
本稿では,エンド・ツー・エンドのディープラーニングフレームワークであるTGVN(Trust- Guided Variational Network)について述べる。
我々は, マルチコイル・マルチコントラストMRI再構成において, 不完全あるいは低SNR測定を副次情報として用い, 重度のアンダーサンプルデータから他のコントラストの高画質画像を再構成する手法の有効性を実証した。
TGVNは異なるコントラスト、解剖学、磁場強度で堅牢である。
副次情報を利用したベースラインと比較して、TGVNは、難易度でも微妙な病理特性を維持しつつ、幻覚を最小化しながら、獲得を劇的に高速化する。
ソースコードとデータセットの分割はgithub.com/sodicksonlab/TGVNで入手できる。
関連論文リスト
- A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling [1.1622133377827824]
複数のMRIコントラストには冗長な情報が含まれているため、アンサンプされた後続のコントラストの再構築を導くための先行として、1コントラストが使用できる。
この問題に対処するガイド付き再構成のためのモジュラー2世代手法を提案する。
論文 参考訳(メタデータ) (2024-09-20T13:08:51Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - ClamNet: Using contrastive learning with variable depth Unets for
medical image segmentation [0.0]
ユニッツは、完全な畳み込みネットワーク(FCN)とともに、医療画像のセマンティックセグメンテーションの標準手法となった。
Unet++は、UnetとFCNが直面している問題のいくつかを解決するために、Unetの亜種として導入された。
医用画像のセマンティックセグメンテーションにUnet++を訓練するために, コントラスト学習を用いる。
論文 参考訳(メタデータ) (2022-06-10T16:55:45Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
脳画像合成のための新しい自己教師型学習(FedMed)を提案する。
アフィン変換損失(ATL)は、プライバシー法に違反することなく、ひどく歪んだ画像を使用するように定式化された。
提案手法は, 極めて不整合かつ不整合なデータ設定下での合成結果の品質の両方において, 高度な性能を示す。
論文 参考訳(メタデータ) (2022-01-29T13:45:39Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery [0.0]
生成モデル(ProvoGAN)のための新しいプログレッシブボリューム化戦略を導入する。
ProvoGANは、複雑なボリューム画像復元タスクを、個別の直交次元にわたってタスク最適化された逐次断面積マッピングに分解する。
メインストリームのMRI再構成と合成タスクに関する総合的なデモでは、ProvoGANは最先端のボリュームモデルとクロスセクションモデルよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-11-27T18:55:56Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。