論文の概要: Introduction and Exemplars of Uncertainty Decomposition
- arxiv url: http://arxiv.org/abs/2211.15475v1
- Date: Thu, 17 Nov 2022 17:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:32:46.689930
- Title: Introduction and Exemplars of Uncertainty Decomposition
- Title(参考訳): 不確実性分解の紹介と紹介
- Authors: Shuo Chen
- Abstract要約: 不確実性は、機械学習分野において重要な役割を果たす。
本報告は,2種類の不確かさといくつかの分解例を紹介することによって,不確実性分解の概念を確定することを目的としている。
- 参考スコア(独自算出の注目度): 3.0349501539299686
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Uncertainty plays a crucial role in the machine learning field. Both model
trustworthiness and performance require the understanding of uncertainty,
especially for models used in high-stake applications where errors can cause
cataclysmic consequences, such as medical diagnosis and autonomous driving.
Accordingly, uncertainty decomposition and quantification have attracted more
and more attention in recent years. This short report aims to demystify the
notion of uncertainty decomposition through an introduction to two types of
uncertainty and several decomposition exemplars, including maximum likelihood
estimation, Gaussian processes, deep neural network, and ensemble learning. In
the end, cross connections to other topics in this seminar and two conclusions
are provided.
- Abstract(参考訳): 不確実性は機械学習の分野で重要な役割を果たす。
モデル信頼性と性能の両方が不確実性を理解することを必要としており、特に医療診断や自律運転など、エラーが破滅的な結果を引き起こすようなハイテイクアプリケーションで使用されるモデルでは特に重要である。
そのため、近年は不確実性分解や定量化が注目されている。
本報告は,2種類の不確実性の導入と,最大推定,ガウス過程,ディープニューラルネットワーク,アンサンブル学習などのいくつかの分解経験を通じて,不確実性分解の概念を確定することを目的とする。
最終的に、このセミナーにおける他のトピックとの相互接続と2つの結論が提供される。
関連論文リスト
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
画像セグメンテーションの進歩は、ディープラーニングベースのコンピュータビジョンの広い範囲において重要な役割を果たす。
この文脈において不確かさの定量化が広く研究され、モデル無知(認識の不確実性)やデータ曖昧さ(アラート的不確実性)を表現し、不正な意思決定を防ぐことができる。
この研究は、分野の進歩を左右する不確実性の基本概念と様々なタスクへの応用について議論することで、確率的セグメンテーションの包括的概要を提供する。
論文 参考訳(メタデータ) (2024-11-25T13:26:09Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
視覚言語AIシステムに特有の不確実性の分類法を提案する。
また、精度と校正誤差の両方によく相関する新しい計量信頼度重み付き精度を導入する。
論文 参考訳(メタデータ) (2024-07-02T04:23:54Z) - Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? [26.344949402398917]
本稿では,顕在的深層学習の新たな理論的考察について述べる。
これは二階損失関数の最適化の難しさを強調している。
第二次損失最小化における識別可能性と収束性の問題に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-02-14T10:07:05Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - Decision-Making Under Uncertainty: Beyond Probabilities [5.358161704743754]
古典的な仮定は、確率はシステムの不確実性をすべて十分に捉えることができるというものである。
本稿では、この古典的解釈を超える不確実性に焦点を当てる。
離散モデルと連続モデルの両方に対していくつかの解法を示す。
論文 参考訳(メタデータ) (2023-03-10T10:53:33Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
Advances and Applications [18.731827159755014]
教師付き学習モデルの不確実性の定量化は、より信頼性の高い予測を行う上で重要な役割を果たす。
通常、モデルに関する知識不足が原因で生じるてんかんの不確実性は、より多くのデータを集めることで軽減できる。
論文 参考訳(メタデータ) (2021-11-03T01:22:46Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。