論文の概要: Predicting Football Match Outcomes with eXplainable Machine Learning and
the Kelly Index
- arxiv url: http://arxiv.org/abs/2211.15734v1
- Date: Mon, 28 Nov 2022 19:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 16:59:05.361397
- Title: Predicting Football Match Outcomes with eXplainable Machine Learning and
the Kelly Index
- Title(参考訳): eXplainable Machine LearningとKelly Indexによるフットボールの試合結果の予測
- Authors: Yiming Ren and Teo Susnjak
- Abstract要約: フットボールの試合の結果を予測するための機械学習アプローチが開発されている。
このデータセットは、2019-2021シーズンをカバーするプレミアリーグの試合データに由来する。
また、本書の確率をベンチマークすることで、その効果を評価するための投資戦略も考案した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, a machine learning approach is developed for predicting the
outcomes of football matches. The novelty of this research lies in the
utilisation of the Kelly Index to first classify matches into categories where
each one denotes the different levels of predictive difficulty. Classification
models using a wide suite of algorithms were developed for each category of
matches in order to determine the efficacy of the approach. In conjunction to
this, a set of previously unexplored features were engineering including
Elo-based variables.
The dataset originated from the Premier League match data covering the
2019-2021 seasons. The findings indicate that the process of decomposing the
predictive problem into sub-tasks was effective and produced competitive
results with prior works, while the ensemble-based methods were the most
effective.
The paper also devised an investment strategy in order to evaluate its
effectiveness by benchmarking against bookmaker odds. An approach was developed
that minimises risk by combining the Kelly Index with the predefined confidence
thresholds of the predictive models. The experiments found that the proposed
strategy can return a profit when following a conservative approach that
focuses primarily on easy-to-predict matches where the predictive models
display a high confidence level.
- Abstract(参考訳): 本研究では,サッカーの試合の結果を予測するための機械学習手法を開発した。
この研究の新規性は、Kelly Indexを利用して、マッチをそれぞれ異なるレベルの予測困難を示すカテゴリに分類することにある。
このアプローチの有効性を判断するために,マッチの各カテゴリに対して,幅広いアルゴリズム群を用いた分類モデルを開発した。
これと合わせて、以前は探索されていなかった一連の機能は、Eloベースの変数を含むエンジニアリングだった。
データセットは2019-2021シーズンのプレミアリーグの試合データに由来する。
その結果,予測問題をサブタスクに分解するプロセスが効果的であり,先行研究と競合する結果が得られたが,アンサンブルベースの手法が最も効果的であった。
また,本書の確率をベンチマークすることで有効性を評価するための投資戦略も考案した。
予測モデルの信頼しきい値とケリー指数を組み合わせることでリスクを最小化する手法を開発した。
実験の結果,提案手法は,予測モデルが高い信頼度を示す場合に,予測し易いマッチングに主眼を置く保守的アプローチに従えば,利益を返すことができることがわかった。
関連論文リスト
- A Best-of-Both Approach to Improve Match Predictions and Reciprocal Recommendations for Job Search [15.585641615174623]
本稿では、擬似マッチスコアを利用して、生産における相互推薦を改善するための、新規で実用的なソリューションを紹介し、実証する。
具体的には、実際のマッチングラベルと比較的不正確だが密なマッチング予測を組み合わせることで、より密で直接的な擬似マッチスコアを生成する。
我々の手法は、直接マッチング予測と2つの異なるモデルアプローチの両方の高レベルなアイデアを組み合わせることで、ベスト・オブ・ボス(BoB)アプローチと見なすことができる。
論文 参考訳(メタデータ) (2024-09-17T08:51:02Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Improving Link Prediction in Social Networks Using Local and Global
Features: A Clustering-based Approach [0.0]
本稿では,リンク予測問題に対処するため,第1グループと第2グループを組み合わせた手法を提案する。
提案手法は,まずノードの位置と動的挙動に関連する特徴を同定する。
そして、計算された類似度尺度に基づいて、サブスペースクラスタリングアルゴリズムをグループ社会オブジェクトに適用する。
論文 参考訳(メタデータ) (2023-05-17T14:45:02Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures [0.0]
2人プレイゲームにおける最適戦略の探索として,予測手順のメタラーニングを行う。
このゲームでは、Natureは特徴と関連する結果からなるラベル付きデータを生成する事前のオーバーパラメトリック分布を選択する。
予測器の目的は、新しい特徴から関連する結果の見積にマップする関数を学習することである。
論文 参考訳(メタデータ) (2020-02-26T03:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。