PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
- URL: http://arxiv.org/abs/2211.15759v2
- Date: Wed, 26 Apr 2023 18:01:58 GMT
- Title: PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
- Authors: Tunhou Zhang, Mingyuan Ma, Feng Yan, Hai Li, Yiran Chen
- Abstract summary: PIDS is a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data.
We establish a large search space to jointly consider versatile point interactions and point dimensions.
We improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS) and enhance the quality of prediction.
- Score: 36.55716011085907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interaction and dimension of points are two important axes in designing
point operators to serve hierarchical 3D models. Yet, these two axes are
heterogeneous and challenging to fully explore. Existing works craft point
operator under a single axis and reuse the crafted operator in all parts of 3D
models. This overlooks the opportunity to better combine point interactions and
dimensions by exploiting varying geometry/density of 3D point clouds. In this
work, we establish PIDS, a novel paradigm to jointly explore point interactions
and point dimensions to serve semantic segmentation on point cloud data. We
establish a large search space to jointly consider versatile point interactions
and point dimensions. This supports point operators with various
geometry/density considerations. The enlarged search space with heterogeneous
search components calls for a better ranking of candidate models. To achieve
this, we improve the search space exploration by leveraging predictor-based
Neural Architecture Search (NAS), and enhance the quality of prediction by
assigning unique encoding to heterogeneous search components based on their
priors. We thoroughly evaluate the networks crafted by PIDS on two semantic
segmentation benchmarks, showing ~1% mIOU improvement on SemanticKITTI and
S3DIS over state-of-the-art 3D models.
Related papers
- ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - PointHPS: Cascaded 3D Human Pose and Shape Estimation from Point Clouds [99.60575439926963]
We propose a principled framework, PointHPS, for accurate 3D HPS from point clouds captured in real-world settings.
PointHPS iteratively refines point features through a cascaded architecture.
Extensive experiments demonstrate that PointHPS, with its powerful point feature extraction and processing scheme, outperforms State-of-the-Art methods.
arXiv Detail & Related papers (2023-08-28T11:10:14Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
We propose a novel 3D point cloud learning network, referred to as Dynamic Point Feature Aggregation Network (DPFA-Net)
DPFA-Net has two variants for semantic segmentation and classification of 3D point clouds.
It achieves the state-of-the-art overall accuracy score for semantic segmentation on the S3DIS dataset.
arXiv Detail & Related papers (2021-11-14T05:46:05Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - Segmenting 3D Hybrid Scenes via Zero-Shot Learning [13.161136148641813]
This work is to tackle the problem of point cloud semantic segmentation for 3D hybrid scenes under the framework of zero-shot learning.
We propose a network to synthesize point features for various classes of objects by leveraging the semantic features of both seen and unseen object classes, called PFNet.
The proposed PFNet employs a GAN architecture to synthesize point features, where the semantic relationship between seen-class and unseen-class features is consolidated by adapting a new semantic regularizer.
We introduce two benchmarks for algorithmic evaluation by re-organizing the public S3DIS and ScanNet datasets under six different data splits.
arXiv Detail & Related papers (2021-07-01T13:21:49Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
arXiv Detail & Related papers (2021-03-12T04:13:20Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.