Decentralized Learning with Multi-Headed Distillation
- URL: http://arxiv.org/abs/2211.15774v1
- Date: Mon, 28 Nov 2022 21:01:43 GMT
- Title: Decentralized Learning with Multi-Headed Distillation
- Authors: Andrey Zhmoginov and Mark Sandler and Nolan Miller and Gus Kristiansen
and Max Vladymyrov
- Abstract summary: Decentralized learning with private data is a central problem in machine learning.
We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn from each other.
- Score: 12.90857834791378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning with private data is a central problem in machine
learning. We propose a novel distillation-based decentralized learning
technique that allows multiple agents with private non-iid data to learn from
each other, without having to share their data, weights or weight updates. Our
approach is communication efficient, utilizes an unlabeled public dataset and
uses multiple auxiliary heads for each client, greatly improving training
efficiency in the case of heterogeneous data. This approach allows individual
models to preserve and enhance performance on their private tasks while also
dramatically improving their performance on the global aggregated data
distribution. We study the effects of data and model architecture heterogeneity
and the impact of the underlying communication graph topology on learning
efficiency and show that our agents can significantly improve their performance
compared to learning in isolation.
Related papers
- Decentralized Personalized Federated Learning [4.5836393132815045]
We focus on creating a collaboration graph that guides each client in selecting suitable collaborators for training personalized models.
Unlike traditional methods, our formulation identifies collaborators at a granular level by considering greedy relations of clients.
We achieve this through a bi-level optimization framework that employs a constrained algorithm.
arXiv Detail & Related papers (2024-06-10T17:58:48Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
For a federated learning model to perform well, it is crucial to have a diverse and representative dataset.
We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium.
We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population.
arXiv Detail & Related papers (2023-06-08T23:38:25Z) - Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data [14.386062807300666]
In this paper, we focus on designing a decentralized learning algorithm that is less susceptible to variations in data distribution across devices.
We propose Global Update Tracking (GUT), a novel tracking-based method that aims to mitigate the impact of heterogeneous data in decentralized learning without introducing any communication overhead.
Our experiments show that the proposed method achieves state-of-the-art performance for decentralized learning on heterogeneous data via a $1-6%$ improvement in test accuracy compared to other existing techniques.
arXiv Detail & Related papers (2023-05-08T15:48:53Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.