Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation
- URL: http://arxiv.org/abs/2211.16466v1
- Date: Tue, 29 Nov 2022 18:43:15 GMT
- Title: Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation
- Authors: Miao Xiong, Shen Li, Wenjie Feng, Ailin Deng, Jihai Zhang, Bryan Hooi
- Abstract summary: We show how NeighborAgg can leverage the two essential information via an adaptive neighborhood aggregation.
We also extend our approach to the closely related task of mislabel detection and provide a theoretical coverage guarantee to bound the false negative.
- Score: 30.34223543030105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How do we know when the predictions made by a classifier can be trusted? This
is a fundamental problem that also has immense practical applicability,
especially in safety-critical areas such as medicine and autonomous driving.
The de facto approach of using the classifier's softmax outputs as a proxy for
trustworthiness suffers from the over-confidence issue; while the most recent
works incur problems such as additional retraining cost and accuracy versus
trustworthiness trade-off. In this work, we argue that the trustworthiness of a
classifier's prediction for a sample is highly associated with two factors: the
sample's neighborhood information and the classifier's output. To combine the
best of both worlds, we design a model-agnostic post-hoc approach NeighborAgg
to leverage the two essential information via an adaptive neighborhood
aggregation. Theoretically, we show that NeighborAgg is a generalized version
of a one-hop graph convolutional network, inheriting the powerful modeling
ability to capture the varying similarity between samples within each class. We
also extend our approach to the closely related task of mislabel detection and
provide a theoretical coverage guarantee to bound the false negative.
Empirically, extensive experiments on image and tabular benchmarks verify our
theory and suggest that NeighborAgg outperforms other methods, achieving
state-of-the-art trustworthiness performance.
Related papers
- Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Transformer Uncertainty Estimation with Hierarchical Stochastic
Attention [8.95459272947319]
We propose a novel way to enable transformers to have the capability of uncertainty estimation.
This is achieved by learning a hierarchical self-attention that attends to values and a set of learnable centroids.
We empirically evaluate our model on two text classification tasks with both in-domain (ID) and out-of-domain (OOD) datasets.
arXiv Detail & Related papers (2021-12-27T16:43:31Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
We consider a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate.
We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear encoder.
We provide a robustness certificate for end-to-end classification.
arXiv Detail & Related papers (2020-10-22T22:05:21Z) - Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training [1.0878040851638]
We analyze and enhance robustness properties of both classifiers and regression models.
Specifically, we verify (non-)robustness, propose a robust training procedure, and show that our approach outperforms adversarial attacks.
Second, we provide techniques to distinguish between reliable and non-reliable predictions for unlabeled inputs, to quantify the influence of each feature on a prediction, and compute a feature ranking.
arXiv Detail & Related papers (2020-07-28T10:58:06Z) - Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction [0.8594140167290097]
We develop conformal prediction methods for constructing valid confidence sets in multiclass and multilabel problems.
By leveraging ideas from quantile regression, we build methods that always guarantee correct coverage but additionally provide conditional coverage for both multiclass and multilabel prediction problems.
arXiv Detail & Related papers (2020-04-21T17:45:38Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.