Locally Attentional SDF Diffusion for Controllable 3D Shape Generation
- URL: http://arxiv.org/abs/2305.04461v2
- Date: Tue, 9 May 2023 01:36:00 GMT
- Title: Locally Attentional SDF Diffusion for Controllable 3D Shape Generation
- Authors: Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu,
Heung-Yeung Shum
- Abstract summary: We propose a diffusion-based 3D generation framework, to model plausible 3D shapes, via 2D sketch image input.
Our method is built on a two-stage diffusion model. The first stage, named occupancy-diffusion, aims to generate a low-resolution occupancy field to approximate the shape shell.
The second stage, named SDF-diffusion, synthesizes a high-resolution signed distance field within the occupied voxels determined by the first stage to extract fine geometry.
- Score: 24.83724829092307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the recent rapid evolution of 3D generative neural networks greatly
improves 3D shape generation, it is still not convenient for ordinary users to
create 3D shapes and control the local geometry of generated shapes. To address
these challenges, we propose a diffusion-based 3D generation framework --
locally attentional SDF diffusion, to model plausible 3D shapes, via 2D sketch
image input. Our method is built on a two-stage diffusion model. The first
stage, named occupancy-diffusion, aims to generate a low-resolution occupancy
field to approximate the shape shell. The second stage, named SDF-diffusion,
synthesizes a high-resolution signed distance field within the occupied voxels
determined by the first stage to extract fine geometry. Our model is empowered
by a novel view-aware local attention mechanism for image-conditioned shape
generation, which takes advantage of 2D image patch features to guide 3D voxel
feature learning, greatly improving local controllability and model
generalizability. Through extensive experiments in sketch-conditioned and
category-conditioned 3D shape generation tasks, we validate and demonstrate the
ability of our method to provide plausible and diverse 3D shapes, as well as
its superior controllability and generalizability over existing work. Our code
and trained models are available at
https://zhengxinyang.github.io/projects/LAS-Diffusion.html
Related papers
- Deformable 3D Shape Diffusion Model [21.42513407755273]
We introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation.
We demonstrate state-of-the-art performance in point cloud generation and competitive results in mesh deformation.
Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
arXiv Detail & Related papers (2024-07-31T08:24:42Z) - NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation [29.818827785812086]
Controllable generation of 3D assets is important for many practical applications like content creation in movies, games and engineering, as well as in AR/VR.
We present a suitable representation for 3D diffusion models to enable disentanglement by introducing a hybrid point cloud and neural radiance field approach.
arXiv Detail & Related papers (2023-12-21T18:46:27Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
Aligned Latent Representation [47.945556996219295]
We present a novel alignment-before-generation approach to generate 3D shapes based on 2D images or texts.
Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM)
arXiv Detail & Related papers (2023-06-29T17:17:57Z) - 3D-LDM: Neural Implicit 3D Shape Generation with Latent Diffusion Models [8.583859530633417]
We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder.
This allows us to generate diverse and high quality 3D surfaces.
arXiv Detail & Related papers (2022-12-01T20:00:00Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.