論文の概要: Reinforced Language Modeling for End-to-End Task Oriented Dialog
- arxiv url: http://arxiv.org/abs/2211.16773v1
- Date: Wed, 30 Nov 2022 06:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 16:38:27.430692
- Title: Reinforced Language Modeling for End-to-End Task Oriented Dialog
- Title(参考訳): タスク指向対話のための強化言語モデリング
- Authors: Xiao Yu, Qingyang Wu, Kun Qian, Zhou Yu
- Abstract要約: 本稿では, モデルがテスト時間中に重要な量を生成することに集中するために, 精細な報酬関数と強化学習を使用することを目的とした新しい学習アルゴリズムであるReinforced Language Modeling (RLM)を提案する。
実験の結果,提案したRLMは,MultiWoZにおける情報伝達率,成功率,組み合わせスコアに対して,最先端の性能を達成できた。
- 参考スコア(独自算出の注目度): 58.65226673517163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In task-oriented dialogs such as MultiWoZ (Budzianowski et al., 2018), an
informative and/or successful system response needs to include necessary key
information such as the phone number of a hotel. Therefore, we hypothesize that
by helping the model to focus more on learning key quantities in the dialog,
the model can generative more informative and helpful responses. In this paper,
we propose a new training algorithm, Reinforced Language Modeling (RLM), that
aims to use a fine-grained reward function and reinforcement learning to help
the model focus more on generating key quantities correctly during test time.
Empirical results show our proposed RLM achieves state-of-the-art performance
on the inform rate, success rate, and combined score in MultiWoZ.
- Abstract(参考訳): multiwoz (budzianowski et al., 2018) のようなタスク指向のダイアログでは、システム応答にはホテルの電話番号などの必要なキー情報を含める必要がある。
したがって、モデルがダイアログの重要量の学習にもっと集中するのを助けることによって、モデルがより有益で有用な応答を生成できると仮定する。
本稿では,より詳細な報酬関数と強化学習を用いて,テスト時間中に重要な量を生成することに集中することを目的とした,新たな学習アルゴリズムであるReinforced Language Modeling (RLM)を提案する。
実験の結果,提案したRLMは,MultiWoZにおける情報伝達率,成功率,組み合わせスコアに対して,最先端の性能を達成できた。
関連論文リスト
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Reinforcement Learning with Token-level Feedback for Controllable Text Generation [16.117006822479407]
token-Level rewards for controllable text generationを定式化するTOLEという新しい強化学習アルゴリズムを提案する。
実験結果から,本アルゴリズムは単一属性と複数属性の制御タスクにおいて,優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-03-18T08:18:37Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
人間からのフィードバック(RLHF)からの強化学習は、人間の好みに合わせることで、大きな言語モデル(LLM)の出力の品質を向上させることができる。
強化自己学習(Reinforced Self-Training, ReST)と呼ばれる, バッチ強化学習(RL)の成長にインスパイアされたLLMを人間の好みに合わせるための簡単なアルゴリズムを提案する。
この結果から,ReSTは自動測定値と機械翻訳ベンチマークの人的評価によって,計算とサンプル効率で翻訳品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-08-17T14:12:48Z) - ESRL: Efficient Sampling-based Reinforcement Learning for Sequence
Generation [43.506732624371786]
本稿では,RLを用いたトレーニングシーケンス生成モデルにおいて,サンプリング効率を向上させるための2段階サンプリング手法と動的サンプリング手法を提案する。
実験結果から,ESRLと呼ばれる効率的なサンプリングベースRLは,トレーニング効率とメモリ消費の両方の観点から,すべてのベースラインを上回り得ることが示された。
論文 参考訳(メタデータ) (2023-08-04T09:35:45Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。