A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors
- URL: http://arxiv.org/abs/2403.19273v1
- Date: Thu, 28 Mar 2024 09:57:50 GMT
- Title: A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors
- Authors: Forkan Uddin Ahmed, Annesha Das, Md Zubair,
- Abstract summary: The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work.
The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work. The economy of the nation depends heavily on agriculture. However, choosing crops with better production rates and efficiently controlling crop disease are obstacles that farmers have to face. These issues are addressed in this research by utilizing machine learning methods and real-world datasets. The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors. These datasets offer insightful information on disease trends, soil nutrition demand of crops, and agricultural production history. By incorporating this knowledge, the model first recommends the list of primarily selected crops based on the soil nutrition of a particular user location. Then the predictions of meteorological variables like temperature, rainfall, and humidity are made using SARIMAX models. These weather predictions are then used to forecast the possibilities of diseases for the primary crops list by utilizing the support vector classifier. Finally, the developed model makes use of the decision tree regression model to forecast crop yield and provides a final crop list along with associated possible disease forecast. Utilizing the outcome of the model, farmers may choose the best productive crops as well as prevent crop diseases and reduce output losses by taking preventive actions. Consequently, planning and decision-making processes are supported and farmers can predict possible crop yields. Overall, by offering a detailed decision support system for crop selection and disease prediction, this work can play a vital role in advancing agricultural practices in Bangladesh.
Related papers
- Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Agricultural Recommendation System based on Deep Learning: A Multivariate Weather Forecasting Approach [1.756503402823037]
This paper proposes a context-based crop recommendation system powered by a weather forecast model.
The proposed weather model can forecast Rainfall, Temperature, Humidity, and Sunshine for any given location in Bangladesh with an average R-Squared value of 0.9824.
The system is also adept at making knowledge-based crop suggestions for flood and drought-prone regions.
arXiv Detail & Related papers (2024-01-21T06:33:45Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm.
We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season.
The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture.
arXiv Detail & Related papers (2023-10-18T15:37:19Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Farmer's Assistant: A Machine Learning Based Application for
Agricultural Solutions [0.0]
We create an open-source easy-to-use web application to address some of these issues which may help improve crop production.
In particular, we support crop recommendation, fertilizer recommendation, plant disease prediction, and an interactive news-feed.
arXiv Detail & Related papers (2022-04-24T19:31:10Z) - A Deep Neural Network Approach for Crop Selection and Yield Prediction
in Bangladesh [0.0]
This paper shows the best way of crop selection and yield prediction in minimum cost and effort.
In this paper, we have suggested using the deep neural network for agricultural crop selection and yield prediction.
arXiv Detail & Related papers (2021-08-06T22:25:46Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.