論文の概要: Federated deep clustering with GAN-based data synthesis
- arxiv url: http://arxiv.org/abs/2211.16965v1
- Date: Wed, 30 Nov 2022 13:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 17:33:48.128735
- Title: Federated deep clustering with GAN-based data synthesis
- Title(参考訳): GANに基づくデータ合成による深層クラスタリング
- Authors: Jie Yan, Jing Liu, Ji Qi and Zhong-Yuan Zhang
- Abstract要約: 本稿では,単純だが効果的に連携した深層クラスタリング手法を提案する。
中央のサーバとクライアントの間の通信ラウンドは1回だけ必要であり、非同期で実行でき、デバイスの障害を処理することができる。
- 参考スコア(独自算出の注目度): 10.148338270404846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering has been extensively studied in centralized settings, but
relatively unexplored in federated ones that data are distributed among
multiple clients and can only be kept local at the clients. The necessity to
invest more resources in improving federated clustering methods is twofold: 1)
The performance of supervised federated learning models can benefit from
clustering. 2) It is non-trivial to extend centralized ones to perform
federated clustering tasks. In centralized settings, various deep clustering
methods that perform dimensionality reduction and clustering jointly have
achieved great success. To obtain high-quality cluster information, it is
natural but non-trivial to extend these methods to federated settings. For this
purpose, we propose a simple but effective federated deep clustering method. It
requires only one communication round between the central server and clients,
can run asynchronously, and can handle device failures. Moreover, although most
studies have highlighted adverse effects of the non-independent and identically
distributed (non-IID) data across clients, experimental results indicate that
the proposed method can significantly benefit from this scenario.
- Abstract(参考訳): クラスタリングは集中的な設定で広く研究されてきたが、フェデレーションでは、データが複数のクライアントに分散され、クライアントでのみローカルに保持できる、という比較的未調査のものだ。
フェデレーションクラスタリングの改善により多くのリソースを投資する必要性は2つある。
1)教師付き連合学習モデルの性能はクラスタリングの恩恵を受ける。
2) 集中型クラスタタスクを実行するために集中型クラスタを拡張するのは自明ではない。
集中型環境では、次元の縮小とクラスタリングを共同で行う様々なディープクラスタリング手法が大きな成功を収めている。
高品質なクラスタ情報を得るには、これらの方法をフェデレーション設定に拡張するのは自然なことです。
そこで本研究では,単純だが効果的に連携した深層クラスタリング手法を提案する。
中央サーバとクライアント間の通信ラウンドは1つだけで、非同期に実行でき、デバイス障害を処理できる。
また,非独立かつ同一分散(非iid)データの悪影響については,多くの研究で指摘されているが,提案手法が有益であることが示唆された。
関連論文リスト
- Co-clustering for Federated Recommender System [33.70723179405055]
Federated Recommender System(FRS)は、高品質なレコメンデーションの提供とユーザのプライバシの保護のバランスをとるソリューションを提供する。
パーソナライズされた意思決定パターンによって一般的に観察されるFRSにおける統計的不均一性の存在は、課題を引き起こす可能性がある。
本稿では,Co-clustering Federated RecommendationメカニズムであるCoFedRecを提案する。
論文 参考訳(メタデータ) (2024-11-03T21:32:07Z) - Federated Instruction Tuning of LLMs with Domain Coverage Augmentation [87.49293964617128]
Federated Domain-specific Instruction Tuning (FedDIT)は、限られたクロスクライアントなプライベートデータと、命令拡張のさまざまな戦略を利用する。
我々は,欲求のあるクライアントセンターの選択と検索に基づく拡張を通じて,ドメインカバレッジを最適化するFedDCAを提案する。
クライアント側の計算効率とシステムのスケーラビリティのために、FedDCAの変種であるFedDCA$*$はサーバ側の特徴アライメントを備えた異種エンコーダを利用する。
論文 参考訳(メタデータ) (2024-09-30T09:34:31Z) - FedCCL: Federated Dual-Clustered Feature Contrast Under Domain Heterogeneity [43.71967577443732]
フェデレートラーニング(FL)は、エッジクライアントと中央サーバとのコラボレーションを通じて、プライバシ保護のニューラルネットワークトレーニングパラダイムを促進する。
最近の研究は、単に正規化の形式として平均的な信号を使い、これらの非IID課題の1つの側面にのみ焦点をあてることに限られている。
マルチクラスタ機能を持つコントラストベースのFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-14T13:56:30Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Federated Deep Multi-View Clustering with Global Self-Supervision [51.639891178519136]
フェデレートされたマルチビュークラスタリングは、複数のデバイスに分散したデータからグローバルクラスタリングモデルを学習する可能性がある。
この設定では、ラベル情報は未知であり、データのプライバシを保持する必要がある。
本稿では,複数のクライアントから補完的なクラスタ構造をマイニングできる,新しい多視点クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2023-09-24T17:07:01Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Federated clustering with GAN-based data synthesis [12.256298398007848]
フェデレーションクラスタリング(FC)は、フェデレーション設定における集中クラスタリングの拡張である。
我々は、SDA-FCと呼ばれる新しいフェデレーションクラスタリングフレームワークを提案する。
各クライアントで生成する敵ネットワークをローカルにトレーニングし、生成した合成データをサーバにアップロードし、合成データ上でKMまたはFCMを実行する。
合成データにより、非IID問題に対してモデルが免疫しやすくなり、プライベートデータを共有することなく、より効率的にグローバルな類似性特性を捉えることができる。
論文 参考訳(メタデータ) (2022-10-29T07:42:11Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Secure Federated Clustering [18.37669220755388]
SecFCはセキュアなフェデレーションクラスタリングアルゴリズムであり、同時にユニバーサルパフォーマンスを実現する。
各クライアントのプライベートデータとクラスタセンターは、他のクライアントやサーバにリークされない。
論文 参考訳(メタデータ) (2022-05-31T06:47:18Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。