Universal Neural Optimal Transport
- URL: http://arxiv.org/abs/2212.00133v5
- Date: Mon, 10 Feb 2025 23:08:02 GMT
- Title: Universal Neural Optimal Transport
- Authors: Jonathan Geuter, Gregor Kornhardt, Ingimar Tomasson, Vaios Laschos,
- Abstract summary: UNOT (Universal Neural Optimal Transport) is a novel framework capable of accurately predicting (entropic) OT distances and plans.
We show that our network not only accurately predicts optimal transport distances and plans across a wide range of datasets, but also captures the geometry of the Wasserstein space correctly.
- Score: 0.0
- License:
- Abstract: Optimal Transport (OT) problems are a cornerstone of many applications, but solving them is computationally expensive. To address this problem, we propose UNOT (Universal Neural Optimal Transport), a novel framework capable of accurately predicting (entropic) OT distances and plans between discrete measures of variable resolution for a given cost function. UNOT builds on Fourier Neural Operators, a universal class of neural networks that map between function spaces and that are discretization-invariant, which enables our network to process measures of varying sizes. The network is trained adversarially using a second, generating network and a self-supervised bootstrapping loss. We theoretically justify the use of FNOs, prove that our generator is universal, and that minimizing the bootstrapping loss provably minimizes the ground truth loss. Through extensive experiments, we show that our network not only accurately predicts optimal transport distances and plans across a wide range of datasets, but also captures the geometry of the Wasserstein space correctly. Furthermore, we show that our network can be used as a state-of-the-art initialization for the Sinkhorn algorithm, significantly outperforming existing approaches.
Related papers
- GradINN: Gradient Informed Neural Network [2.287415292857564]
We propose a methodology inspired by Physics Informed Neural Networks (PINNs)
GradINNs leverage prior beliefs about a system's gradient to constrain the predicted function's gradient across all input dimensions.
We demonstrate the advantages of GradINNs, particularly in low-data regimes, on diverse problems spanning non time-dependent systems.
arXiv Detail & Related papers (2024-09-03T14:03:29Z) - LaCoOT: Layer Collapse through Optimal Transport [5.869633234882029]
We present an optimal transport method to reduce the depth of over-parametrized deep neural networks.
We show that minimizing this distance enables the complete removal of intermediate layers in the network, with almost no performance loss and without requiring any finetuning.
arXiv Detail & Related papers (2024-06-13T09:03:53Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNet is a reinforcement learning framework to discover resilient network topologies against various disasters and attacks.
We show that ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.
arXiv Detail & Related papers (2021-10-18T06:14:28Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
We propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems.
The proposed method is highly scalable and can solve the beamforming problem in an interference channel with $1000$ transceiver pairs within $6$ milliseconds on a single GPU.
arXiv Detail & Related papers (2020-07-15T11:43:32Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
We propose a novel convolutional neural network (CNN) designed for learning pseudodifferential operators ($Psi$DOs) in the context of linear inverse problems.
We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN.
In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling and convolution, can be exactly determined by combining the convolutional nature of the limited angle X-ray transform and basic properties defining a wavelet system.
arXiv Detail & Related papers (2020-06-02T14:03:41Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.