論文の概要: Novel Modelling Strategies for High-frequency Stock Trading Data
- arxiv url: http://arxiv.org/abs/2212.00148v1
- Date: Wed, 30 Nov 2022 22:50:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 17:24:21.175782
- Title: Novel Modelling Strategies for High-frequency Stock Trading Data
- Title(参考訳): 高周波株式取引データのための新規モデリング戦略
- Authors: Xuekui Zhang, Yuying Huang, Ke Xu and Li Xing
- Abstract要約: 生データ処理のための3つの新しいモデリング手法を提案する。
我々は、我々の戦略が予測の統計的に顕著な改善につながることをしばしば示している。
3つの戦略はSVMモデルのF1スコアをそれぞれ0.056、0.087、0.016で改善する。
- 参考スコア(独自算出の注目度): 4.639889477442706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full electronic automation in stock exchanges has recently become popular,
generating high-frequency intraday data and motivating the development of near
real-time price forecasting methods. Machine learning algorithms are widely
applied to mid-price stock predictions. Processing raw data as inputs for
prediction models (e.g., data thinning and feature engineering) can primarily
affect the performance of the prediction methods. However, researchers rarely
discuss this topic. This motivated us to propose three novel modelling
strategies for processing raw data. We illustrate how our novel modelling
strategies improve forecasting performance by analyzing high-frequency data of
the Dow Jones 30 component stocks. In these experiments, our strategies often
lead to statistically significant improvement in predictions. The three
strategies improve the F1 scores of the SVM models by 0.056, 0.087, and 0.016,
respectively.
- Abstract(参考訳): 証券取引所における完全電子的自動化が最近普及し、高周波の日内データを生成し、ほぼリアルタイムな価格予測手法の開発を動機付けている。
機械学習アルゴリズムは価格の中間株価予測に広く適用されている。
予測モデル(例えば、データ薄型化や特徴工学)の入力として生データを処理することは、主に予測手法の性能に影響する。
しかし、研究者はこの話題についてはほとんど議論しない。
これは生データ処理のための3つの新しいモデリング戦略を提案する動機となった。
提案手法は,ダウ・ジョーンズ30成分株の高周波データを分析し,予測性能を向上させるものである。
これらの実験において、我々の戦略は予測の統計的に顕著な改善をもたらすことが多い。
3つの戦略はSVMモデルのF1スコアをそれぞれ0.056、0.087、0.016で改善する。
関連論文リスト
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
在庫価格予測のためのディープラーニングモデルと従来の統計手法の比較分析は、ナイジェリア証券取引所のデータを用いている。
深層学習モデル、特にLSTMは、データの複雑な非線形パターンをキャプチャすることで従来の手法より優れている。
この結果は、金融予測と投資戦略を改善するための深層学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-09-29T11:20:20Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
我々は,テキストS&textP 500,NASDAQ,DJI,NYSE,RASELの指標の傾向を予測するために,さまざまなデータソースに適用可能なグラフニューラルネットワークベースの畳み込みニューラルネットワーク(CNN)モデルを提案する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能が約4%から15%に向上した。
論文 参考訳(メタデータ) (2024-07-04T09:14:24Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
本稿では,事前学習とデータ拡張の観点から分布シフト問題を考察する。
我々は,事前学習とデータ拡張に焦点を当てた,最初の総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2022-05-25T13:04:53Z) - Compatible deep neural network framework with financial time series
data, including data preprocessor, neural network model and trading strategy [2.347843817145202]
この研究は、新しいディープニューラルネットワークアーキテクチャと、それらをモデルに供給する前に、財務データをどのように準備するかという新しいアイデアを紹介する。
この手法を評価するために3つの異なるデータセットが使用され、その結果、このフレームワークが有益でロバストな予測を私たちに提供できることが示されている。
論文 参考訳(メタデータ) (2022-05-11T20:44:08Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。