論文の概要: Explainable Artificial Intelligence for Improved Modeling of Processes
- arxiv url: http://arxiv.org/abs/2212.00695v1
- Date: Thu, 1 Dec 2022 17:56:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 15:10:53.581316
- Title: Explainable Artificial Intelligence for Improved Modeling of Processes
- Title(参考訳): プロセスモデリング改善のための説明可能な人工知能
- Authors: Riza Velioglu, Jan Philip G\"opfert, Andr\'e Artelt, Barbara Hammer
- Abstract要約: 我々は,現代的なトランスフォーマーアーキテクチャと,より古典的なプロセス規則性モデリングの機械学習技術の性能を評価する。
MLモデルは重要な結果を予測することができ、注意機構やXAIコンポーネントが基礎となるプロセスに新たな洞察を与えることを示す。
- 参考スコア(独自算出の注目度): 6.29494485203591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern business processes, the amount of data collected has increased
substantially in recent years. Because this data can potentially yield valuable
insights, automated knowledge extraction based on process mining has been
proposed, among other techniques, to provide users with intuitive access to the
information contained therein. At present, the majority of technologies aim to
reconstruct explicit business process models. These are directly interpretable
but limited concerning the integration of diverse and real-valued information
sources. On the other hand, Machine Learning (ML) benefits from the vast amount
of data available and can deal with high-dimensional sources, yet it has rarely
been applied to being used in processes. In this contribution, we evaluate the
capability of modern Transformer architectures as well as more classical ML
technologies of modeling process regularities, as can be quantitatively
evaluated by their prediction capability. In addition, we demonstrate the
capability of attentional properties and feature relevance determination by
highlighting features that are crucial to the processes' predictive abilities.
We demonstrate the efficacy of our approach using five benchmark datasets and
show that the ML models are capable of predicting critical outcomes and that
the attention mechanisms or XAI components offer new insights into the
underlying processes.
- Abstract(参考訳): 現代のビジネスプロセスでは、収集されたデータの量は近年大幅に増加しています。
このデータによって価値ある洞察が得られる可能性があるため、プロセスマイニングに基づく自動知識抽出が提案されており、その情報に直感的にアクセスできるようになっている。
現在、多くの技術は明確なビジネスプロセスモデルを再構築することを目指している。
これらは直接解釈可能であるが、多様で実価値の高い情報ソースの統合に関する制限がある。
一方、機械学習(ML)は、利用可能な膨大なデータから恩恵を受け、高次元のソースを扱うことができるが、プロセスで使用されることはめったにない。
そこで本研究では,近年のトランスフォーマーアーキテクチャの能力と,より古典的なml技術であるモデリングプロセス規則性を評価し,その予測能力によって定量的に評価する。
さらに,プロセスの予測能力に不可欠な特徴を強調することで,注意特性と特徴関連性判定の能力を示す。
5つのベンチマークデータセットを用いてアプローチの有効性を実証し、MLモデルが臨界結果を予測でき、注意機構やXAIコンポーネントが基盤となるプロセスに新たな洞察を与えることを示す。
関連論文リスト
- Informed Meta-Learning [55.2480439325792]
メタラーニングとインシデントMLは、事前知識をMLパイプラインに組み込むための2つのアプローチとして際立っている。
我々は,非構造化知識表現からの事前の取り込みを容易にする,情報メタラーニングというハイブリッドパラダイムを定式化する。
データ効率、観測ノイズに対する堅牢性、タスク分散シフトを改善する上で、情報メタラーニングの潜在的な利点を実証する。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
センサとデータ全般の可用性は向上していますが、純粋なデータ駆動アプローチから多くのサービス内エンジニアリングシステムや構造を完全に特徴づけることはできません。
本稿では、限られたデータで予測モデルを作成する能力を高めるために、機械学習技術と物理に基づく推論の組み合わせを追求する。
論文 参考訳(メタデータ) (2023-09-19T14:39:03Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - Entity Aware Modelling: A Survey [22.32009539611539]
最近の機械学習の進歩により、新しい最先端の応答予測モデルが生まれている。
人口レベルで構築されたモデルは、多くのパーソナライズされた予測設定において、最適以下のパフォーマンスをもたらすことが多い。
パーソナライズされた予測では、予測性能を改善するために、異なるエンティティの固有の特性を取り入れることが目的である。
論文 参考訳(メタデータ) (2023-02-16T16:33:33Z) - Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization [0.0]
我々は,理論的プロセスモデルと関連する最小隠れマルコフモデルを統合する,数学的に新しい手法を提案する。
提案手法は, (a) 理論的プロセスモデル, (b) HMM, (c) 結合非負行列テンソル因子分解, (d) カスタムモデル選択を集約する。
論文 参考訳(メタデータ) (2022-10-03T16:19:27Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。