論文の概要: A spectrum of physics-informed Gaussian processes for regression in
engineering
- arxiv url: http://arxiv.org/abs/2309.10656v1
- Date: Tue, 19 Sep 2023 14:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 14:02:47.030966
- Title: A spectrum of physics-informed Gaussian processes for regression in
engineering
- Title(参考訳): 工学における回帰のための物理学インフォームドガウス過程のスペクトル
- Authors: Elizabeth J Cross, Timothy J Rogers, Daniel J Pitchforth, Samuel J
Gibson and Matthew R Jones
- Abstract要約: センサとデータ全般の可用性は向上していますが、純粋なデータ駆動アプローチから多くのサービス内エンジニアリングシステムや構造を完全に特徴づけることはできません。
本稿では、限られたデータで予測モデルを作成する能力を高めるために、機械学習技術と物理に基づく推論の組み合わせを追求する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the growing availability of sensing and data in general, we remain
unable to fully characterise many in-service engineering systems and structures
from a purely data-driven approach. The vast data and resources available to
capture human activity are unmatched in our engineered world, and, even in
cases where data could be referred to as ``big,'' they will rarely hold
information across operational windows or life spans. This paper pursues the
combination of machine learning technology and physics-based reasoning to
enhance our ability to make predictive models with limited data. By explicitly
linking the physics-based view of stochastic processes with a data-based
regression approach, a spectrum of possible Gaussian process models are
introduced that enable the incorporation of different levels of expert
knowledge of a system. Examples illustrate how these approaches can
significantly reduce reliance on data collection whilst also increasing the
interpretability of the model, another important consideration in this context.
- Abstract(参考訳): センサとデータ全般の可用性は向上していますが、純粋なデータ駆動アプローチから多くのサービス内エンジニアリングシステムや構造を完全に特徴づけることはできません。
人間の活動を取り込むために利用可能な膨大なデータとリソースは、我々のエンジニアリングされた世界では一致せず、データが ``big,''' と呼ばれる場合でさえ、運用上のウィンドウやライフスパン間で情報を保持することは滅多にありません。
本稿では,機械学習技術と物理ベースの推論を組み合わせることで,限られたデータで予測モデルを作成する能力を高める。
確率過程の物理的視点とデータに基づく回帰的アプローチを明示的に結びつけることにより、システムの異なるレベルの専門家知識を組み込むことが可能なガウス過程モデルのスペクトルを導入する。
例は、これらのアプローチがデータ収集への依存を著しく低減すると同時に、モデルの解釈可能性を高める方法を示している。
関連論文リスト
- Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Explainable Artificial Intelligence for Improved Modeling of Processes [6.29494485203591]
我々は,現代的なトランスフォーマーアーキテクチャと,より古典的なプロセス規則性モデリングの機械学習技術の性能を評価する。
MLモデルは重要な結果を予測することができ、注意機構やXAIコンポーネントが基礎となるプロセスに新たな洞察を与えることを示す。
論文 参考訳(メタデータ) (2022-12-01T17:56:24Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
線形回帰モデルに変数間の変換や相互作用を手動で追加することで、非線形解が必ずしも改善されないことを示す。
データ駆動モデルを構築する前にこれを認識する方法や、そのような分析が本質的に解釈可能な回帰モデルへの移行にどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2022-11-21T17:48:44Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - You Only Compress Once: Optimal Data Compression for Estimating Linear
Models [1.2845031126178592]
線形モデルを用いる多くの工学システムは分散システムおよび専門家構成によって計算効率を達成します。
条件付き十分な統計は、統一されたデータ圧縮と推定戦略である。
論文 参考訳(メタデータ) (2021-02-22T19:00:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - A probabilistic generative model for semi-supervised training of
coarse-grained surrogates and enforcing physical constraints through virtual
observables [3.8073142980733]
本稿では、トレーニング目的と代理モデル自体の両方において、物理的構造と情報を考慮した柔軟な確率的フレームワークを提供する。
我々は、物理から得られる等式を仮想観測可能なものとして導入し、その可能性を通じて追加情報を提供する確率論的モデルを提案する。
論文 参考訳(メタデータ) (2020-06-02T17:14:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。