論文の概要: Architectural Implications of Embedding Dimension during GCN on CPU and
GPU
- arxiv url: http://arxiv.org/abs/2212.00827v1
- Date: Thu, 1 Dec 2022 19:23:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:42:33.482380
- Title: Architectural Implications of Embedding Dimension during GCN on CPU and
GPU
- Title(参考訳): CPUおよびGPU上のGCN中の埋め込み次元のアーキテクチャ的意味
- Authors: Matthew Adiletta, David Brooks, Gu-Yeon Wei
- Abstract要約: グラフ畳み込みネットワーク(GCNs)は、グラフ学習問題に広く用いられているGNNの一種である。
GCNは、固有のスパーシリティ、低いデータ再利用、大規模なメモリ容量要求のため、アーキテクチャの観点からは難しいアルゴリズムである。
- 参考スコア(独自算出の注目度): 6.650945912906685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are a class of neural networks designed to
extract information from the graphical structure of data. Graph Convolutional
Networks (GCNs) are a widely used type of GNN for transductive graph learning
problems which apply convolution to learn information from graphs. GCN is a
challenging algorithm from an architecture perspective due to inherent
sparsity, low data reuse, and massive memory capacity requirements. Traditional
neural algorithms exploit the high compute capacity of GPUs to achieve high
performance for both inference and training. The architectural decision to use
a GPU for GCN inference is a question explored in this work. GCN on both CPU
and GPU was characterized in order to better understand the implications of
graph size, embedding dimension, and sampling on performance.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、データのグラフィカルな構造から情報を抽出するために設計されたニューラルネットワークのクラスである。
グラフ畳み込みネットワーク(GCN)は、グラフから情報を学ぶために畳み込みを適用した、トランスダクティブグラフ学習問題に広く用いられているタイプのGNNである。
GCNは、固有のスパーシリティ、低いデータ再利用、大規模なメモリ容量要求のため、アーキテクチャの観点からは難しいアルゴリズムである。
従来のニューラルネットワークは、推論とトレーニングの両方で高いパフォーマンスを達成するために、GPUの高い計算能力を利用する。
GCN推論にGPUを使用するというアーキテクチャ上の決定は、この研究で検討された問題である。
CPUとGPUの両方のGCNは、グラフサイズ、埋め込み次元、パフォーマンスのサンプリングの影響をよりよく理解するために特徴付けられている。
関連論文リスト
- Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study [13.354505458409957]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習することができる。
グラフのばらつきは、最適以下のメモリアクセスパターンと長いトレーニング時間をもたらす。
グラフの並べ替えは、CPUおよびGPUベースのトレーニングのトレーニング時間を削減するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-17T12:28:02Z) - Layer-wise training for self-supervised learning on graphs [0.0]
大規模グラフ上でのグラフニューラルネットワーク(GNN)のエンドツーエンドトレーニングは、いくつかのメモリと計算上の課題を示す。
本稿では,GNN層を自己教師型で学習するアルゴリズムであるレイヤワイズ正規化グラフInfomaxを提案する。
論文 参考訳(メタデータ) (2023-09-04T10:23:39Z) - Cached Operator Reordering: A Unified View for Fast GNN Training [24.917363701638607]
グラフニューラルネットワーク(GNN)は、構造化グラフデータを扱う強力なツールであり、ノード分類、グラフ分類、クラスタリングといったタスクに対処する。
しかし、GNN計算のスパース性は、従来のディープニューラルネットワークと比較してパフォーマンス最適化に新たな課題をもたらす。
GNN計算,I/O,メモリの統一的なビューを提供することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-08-23T12:27:55Z) - Accelerating Sampling and Aggregation Operations in GNN Frameworks with
GPU Initiated Direct Storage Accesses [9.773813896475264]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールとして登場している。
大規模グラフ上でのGNNのトレーニングは、効率的なデータアクセスとデータ移動方法が欠如しているため、依然として大きな課題である。
大規模グラフに対するGPU指向GNNトレーニングを実現するために,GPU Initiated Direct Storage Access (GIDS) データローダを提案する。
論文 参考訳(メタデータ) (2023-06-28T17:22:15Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - SPA-GCN: Efficient and Flexible GCN Accelerator with an Application for
Graph Similarity Computation [7.54579279348595]
本稿では,グラフ上のグラフ畳み込みネットワーク(GCN)を高速化するための,SPA-GCNと呼ばれる柔軟なアーキテクチャを提案する。
SPA-GCNはマルチコアCPU実装やGPU実装と比較して高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2021-11-10T20:47:57Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。