論文の概要: Layer-wise training for self-supervised learning on graphs
- arxiv url: http://arxiv.org/abs/2309.01503v1
- Date: Mon, 4 Sep 2023 10:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 19:02:08.077703
- Title: Layer-wise training for self-supervised learning on graphs
- Title(参考訳): グラフ上での自己教師型学習のためのレイヤーワイズトレーニング
- Authors: Oscar Pina and Ver\'onica Vilaplana
- Abstract要約: 大規模グラフ上でのグラフニューラルネットワーク(GNN)のエンドツーエンドトレーニングは、いくつかのメモリと計算上の課題を示す。
本稿では,GNN層を自己教師型で学習するアルゴリズムであるレイヤワイズ正規化グラフInfomaxを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: End-to-end training of graph neural networks (GNN) on large graphs presents
several memory and computational challenges, and limits the application to
shallow architectures as depth exponentially increases the memory and space
complexities. In this manuscript, we propose Layer-wise Regularized Graph
Infomax, an algorithm to train GNNs layer by layer in a self-supervised manner.
We decouple the feature propagation and feature transformation carried out by
GNNs to learn node representations in order to derive a loss function based on
the prediction of future inputs. We evaluate the algorithm in inductive large
graphs and show similar performance to other end to end methods and a
substantially increased efficiency, which enables the training of more
sophisticated models in one single device. We also show that our algorithm
avoids the oversmoothing of the representations, another common challenge of
deep GNNs.
- Abstract(参考訳): 大きなグラフ上のグラフニューラルネットワーク(GNN)のエンドツーエンドトレーニングは、いくつかのメモリと計算上の課題を示し、深さがメモリと空間の複雑さを指数関数的に増加させるにつれて、アプリケーションは浅いアーキテクチャに制限される。
本稿では,GNN層を自己教師型で学習するアルゴリズムであるLayer-wise Regularized Graph Infomaxを提案する。
我々は,gnnが行った特徴伝達と特徴変換を分離してノード表現を学習し,将来の入力予測に基づいて損失関数を導出する。
我々は,このアルゴリズムをインダクティブな大規模グラフで評価し,他のエンド・ツー・エンド手法と同等の性能を示し,効率を大幅に向上させ,単一のデバイスでより洗練されたモデルのトレーニングを可能にする。
また,このアルゴリズムは表現の過剰な移動を避けること,深層gnnのもう一つの共通課題である。
関連論文リスト
- Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity [30.2972965458946]
グラフネットワーク(GNN)はノード分類などのグラフ学習問題に広く適用されている。
GNNの基盤となるグラフをより大きなサイズにスケールアップする場合、完全なグラフをトレーニングするか、あるいは完全なグラフの隣接とノードのメモリへの埋め込みを維持せざるを得ません。
本稿では,学習時間と記憶量がグラフサイズに比例して増加するスケッチベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-21T18:22:11Z) - Cached Operator Reordering: A Unified View for Fast GNN Training [24.917363701638607]
グラフニューラルネットワーク(GNN)は、構造化グラフデータを扱う強力なツールであり、ノード分類、グラフ分類、クラスタリングといったタスクに対処する。
しかし、GNN計算のスパース性は、従来のディープニューラルネットワークと比較してパフォーマンス最適化に新たな課題をもたらす。
GNN計算,I/O,メモリの統一的なビューを提供することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-08-23T12:27:55Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs
Transformation [0.0]
グラフスーパー最適化システムは、最適な計算グラフ構造を見つけるために、ニューラルネットワークへのサブグラフ置換のシーケンスを実行する。
提案手法は,多種多様なディープラーニングモデルにおいて最先端の超最適化システムより優れており,トランスフォーマースタイルのアーキテクチャをベースとしたシステムでは最大40%の精度で実現可能であることを示す。
論文 参考訳(メタデータ) (2023-04-28T09:06:18Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。