論文の概要: SimpleMind adds thinking to deep neural networks
- arxiv url: http://arxiv.org/abs/2212.00951v1
- Date: Fri, 2 Dec 2022 03:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 16:40:58.006606
- Title: SimpleMind adds thinking to deep neural networks
- Title(参考訳): SimpleMindが深層ニューラルネットワークに思考機能を追加
- Authors: Youngwon Choi, M. Wasil Wahi-Anwar, Matthew S. Brown
- Abstract要約: ディープニューラルネットワーク(DNN)はデータのパターンを検出し、多くのコンピュータビジョンアプリケーションで汎用性と強力なパフォーマンスを示している。
DNNだけでは、単純で常識的な概念に反する明らかな誤りに陥り、明確な知識を使って探索と意思決定を導く能力に制限がある。
本稿では,医療画像理解に焦点を当てたCognitive AIのためのオープンソースソフトウェアフレームワークであるSimpleMindを紹介する。
- 参考スコア(独自算出の注目度): 3.888848425698769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) detect patterns in data and have shown
versatility and strong performance in many computer vision applications.
However, DNNs alone are susceptible to obvious mistakes that violate simple,
common sense concepts and are limited in their ability to use explicit
knowledge to guide their search and decision making. While overall DNN
performance metrics may be good, these obvious errors, coupled with a lack of
explainability, have prevented widespread adoption for crucial tasks such as
medical image analysis. The purpose of this paper is to introduce SimpleMind,
an open-source software framework for Cognitive AI focused on medical image
understanding. It allows creation of a knowledge base that describes expected
characteristics and relationships between image objects in an intuitive
human-readable form. The SimpleMind framework brings thinking to DNNs by: (1)
providing methods for reasoning with the knowledge base about image content,
such as spatial inferencing and conditional reasoning to check DNN outputs; (2)
applying process knowledge, in the form of general-purpose software agents,
that are chained together to accomplish image preprocessing, DNN prediction,
and result post-processing, and (3) performing automatic co-optimization of all
knowledge base parameters to adapt agents to specific problems. SimpleMind
enables reasoning on multiple detected objects to ensure consistency, providing
cross checking between DNN outputs. This machine reasoning improves the
reliability and trustworthiness of DNNs through an interpretable model and
explainable decisions. Example applications are provided that demonstrate how
SimpleMind supports and improves deep neural networks by embedding them within
a Cognitive AI framework.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)はデータのパターンを検出し、多くのコンピュータビジョンアプリケーションで汎用性と強力なパフォーマンスを示している。
しかし、DNNだけでは、単純で常識的な概念に反する明らかな誤りに陥り、明確な知識を使って探索と意思決定を導く能力に制限がある。
全体的なDNNパフォーマンス指標は良いかもしれないが、これらの明らかなエラーは説明可能性の欠如と相まって、医療画像解析などの重要なタスクに広く採用されることを防いでいる。
本稿では,医療画像理解に焦点を当てた認知AIのためのオープンソースソフトウェアフレームワークであるSimpleMindを紹介する。
画像オブジェクト間の期待される特性と関係を直感的な形で記述する知識ベースを作成することができる。
The SimpleMind framework brings thinking to DNNs by: (1) providing methods for reasoning with the knowledge base about image content, such as spatial inferencing and conditional reasoning to check DNN outputs; (2) applying process knowledge, in the form of general-purpose software agents, that are chained together to accomplish image preprocessing, DNN prediction, and result post-processing, and (3) performing automatic co-optimization of all knowledge base parameters to adapt agents to specific problems.
SimpleMindは、複数の検出されたオブジェクトを推論して一貫性を確保し、DNN出力間のクロスチェックを提供する。
このマシン推論は、解釈可能なモデルと説明可能な決定を通じて、DNNの信頼性と信頼性を向上させる。
SimpleMindがディープニューラルネットワークをどのようにサポートし、Cognitive AIフレームワークに組み込むかを示すサンプルアプリケーションを提供している。
関連論文リスト
- An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
自然言語における常識推論は、人工知能システムの望ましい能力である。
複雑なコモンセンス推論タスクを解決するための典型的な解決策は、知識対応グラフニューラルネットワーク(GNN)エンコーダで事前訓練された言語モデル(PTM)を強化することである。
有効性にもかかわらず、これらのアプローチは重いアーキテクチャ上に構築されており、外部知識リソースがPTMの推論能力をどのように改善するかを明確に説明できない。
論文 参考訳(メタデータ) (2022-05-04T01:27:36Z) - Concept Embeddings for Fuzzy Logic Verification of Deep Neural Networks
in Perception Tasks [1.2246649738388387]
我々は、訓練された畳み込みニューラルネットワーク(CNN)が特定の記号的背景知識を尊重するかどうかを検証するための、単純で効果的なアプローチを提案する。
知識はファジィ述語論理則から成り立つ。
このアプローチはファジィ性と概念出力の校正の恩恵を受けていることを示す。
論文 参考訳(メタデータ) (2022-01-03T10:35:47Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Utilizing Explainable AI for Quantization and Pruning of Deep Neural
Networks [0.495186171543858]
AI(Artificial Intelligence)の手法を理解し説明するための最近の取り組みは、説明可能なAIと呼ばれる新しい研究領域につながった。
AI(Artificial Intelligence)の手法を理解し説明するための最近の取り組みは、説明可能なAIと呼ばれる新しい研究領域につながった。
本稿では,DeepLIFT法を中心に説明可能なAI手法を用いる。
論文 参考訳(メタデータ) (2020-08-20T16:52:58Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
ディープ・ニューラル・ネットワーク(DNN)は構造的マルウェア(すなわち、重みと活性化経路)を持つ
バックドアの検出は一般的に困難であり、既存の検出手法は計算に高価であり、膨大なリソースを必要とする(トレーニングデータへのアクセスなど)。
そこで本研究では,DNNの堅牢性,指紋の非線形性を定量化し,バックドアの検出を可能にする,高速な特徴生成手法を提案する。
実験の結果,既存の手法(秒対秒)よりも高い信頼度でバックドアを正確に検出できることが判明した。
論文 参考訳(メタデータ) (2020-07-31T23:52:58Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Adversarial Approach for Explaining the Predictions of Deep Neural
Networks [9.645196221785694]
本稿では,敵対的機械学習を用いて,ディープニューラルネットワーク(DNN)の予測を説明する新しいアルゴリズムを提案する。
提案手法は,DNNに対する敵攻撃の挙動に基づいて,入力特徴の相対的重要性を推定する。
分析により、一貫性のある効率的な説明が得られます。
論文 参考訳(メタデータ) (2020-05-20T18:06:53Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
ディープニューラルネットワーク(DNN)の内部動作を説明するために,ニューラルアーキテクチャ・ディコンタングルメント(NAD)を導入する。
NADは、訓練済みのDNNを独立したタスクに従ってサブアーキテクチャに切り離すことを学び、推論プロセスを記述する情報フローを形成する。
その結果、誤分類された画像は、タスクサブアーキテクチャーに正しいサブアーキテクチャーに割り当てられる確率が高いことが示された。
論文 参考訳(メタデータ) (2020-03-30T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。