論文の概要: Extracting Interpretable Logic Rules from Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2503.19476v1
- Date: Tue, 25 Mar 2025 09:09:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:32.379586
- Title: Extracting Interpretable Logic Rules from Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークによる解釈可能な論理則の抽出
- Authors: Chuqin Geng, Zhaoyue Wang, Ziyu Zhao, Haolin Ye, Xujie Si,
- Abstract要約: グラフニューラルネットワーク(GNN)は入力特徴空間とグラフ構造の両方で動作する。
本稿では,GNN から解釈可能な論理規則を抽出するための新しいフレームワーク LOGI CXGNN を提案する。
LOGI CXGNNはモデルに依存しず、効率的で、データ駆動であり、事前定義された概念は不要である。
- 参考スコア(独自算出の注目度): 7.262955921646326
- License:
- Abstract: Graph neural networks (GNNs) operate over both input feature spaces and combinatorial graph structures, making it challenging to understand the rationale behind their predictions. As GNNs gain widespread popularity and demonstrate success across various domains, such as drug discovery, studying their interpretability has become a critical task. To address this, many explainability methods have been proposed, with recent efforts shifting from instance-specific explanations to global concept-based explainability. However, these approaches face several limitations, such as relying on predefined concepts and explaining only a limited set of patterns. To address this, we propose a novel framework, LOGICXGNN, for extracting interpretable logic rules from GNNs. LOGICXGNN is model-agnostic, efficient, and data-driven, eliminating the need for predefined concepts. More importantly, it can serve as a rule-based classifier and even outperform the original neural models. Its interpretability facilitates knowledge discovery, as demonstrated by its ability to extract detailed and accurate chemistry knowledge that is often overlooked by existing methods. Another key advantage of LOGICXGNN is its ability to generate new graph instances in a controlled and transparent manner, offering significant potential for applications such as drug design. We empirically demonstrate these merits through experiments on real-world datasets such as MUTAG and BBBP.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は入力特徴空間と組合せグラフ構造の両方で動作し、それらの予測の背後にある理論的根拠を理解することは困難である。
GNNが広く普及し、薬物発見などの様々な領域で成功を示すにつれ、その解釈可能性の研究が重要な課題となっている。
これを解決するために、近年ではインスタンス固有の説明からグローバルな概念に基づく説明可能性へと移行した多くの説明可能性手法が提案されている。
しかし、これらのアプローチは、事前定義された概念に依存したり、限られたパターンのみを説明するなど、いくつかの制限に直面している。
そこで我々は,GNN から解釈可能な論理規則を抽出する新しいフレームワーク LOGICXGNN を提案する。
LOGICXGNNはモデルに依存しず、効率的で、データ駆動であり、事前定義された概念は不要である。
さらに重要なのは、ルールベースの分類器として機能し、オリジナルのニューラルモデルよりも優れていることだ。
その解釈可能性によって知識の発見が促進され、既存の方法によって見落とされがちな詳細な正確な化学知識を抽出する能力によって示される。
LOGICXGNNのもう1つの重要な利点は、新しいグラフインスタンスをコントロールされ透明な方法で生成する能力であり、薬物設計のようなアプリケーションに大きな可能性を秘めている。
MUTAGやBBBPといった実世界のデータセットの実験を通じて,これらのメリットを実証的に実証した。
関連論文リスト
- Do graph neural network states contain graph properties? [5.222978725954348]
診断分類器を用いたグラフニューラルネットワーク(GNN)のモデル説明可能性パイプラインを提案する。
このパイプラインは、さまざまなアーキテクチャやデータセットにわたるGNNの学習した表現を探索し、解釈することを目的としている。
論文 参考訳(メタデータ) (2024-11-04T15:26:07Z) - Factorized Explainer for Graph Neural Networks [7.382632811417645]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する能力によって、注目を集めている。
GNN予測を理解するために、ポストホックなインスタンスレベルの説明法が提案されている。
理論的性能保証を伴う新しい因子化説明モデルを提案する。
論文 参考訳(メタデータ) (2023-12-09T15:29:45Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Global Concept-Based Interpretability for Graph Neural Networks via
Neuron Analysis [0.0]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ関連タスクに非常に効果的である。
解釈性と透明性が欠如している。
現在の説明可能性のアプローチは一般的にローカルで、GNNをブラックボックスとして扱う。
本稿では,ニューロンレベルの概念を用いたGNNのグローバルな説明を創出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T21:30:55Z) - FlowX: Towards Explainable Graph Neural Networks via Message Flows [59.025023020402365]
グラフニューラルネットワーク(GNN)の動作メカニズム解明へのステップとして,その説明可能性について検討する。
本稿では,重要なメッセージフローを識別してGNNを説明するために,FlowXと呼ばれる新しい手法を提案する。
そこで我々は,多様な説明対象に向けて,フロースコアを学習するための情報制御学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-26T22:48:15Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Quantitative Evaluation of Explainable Graph Neural Networks for
Molecular Property Prediction [2.8544822698499255]
グラフニューラルネットワーク(GNN)は、解釈可能性の欠如により、薬物発見において限定的に受け入れられている。
本研究では,最新のGNNモデルの解釈可能性を定量的に評価するために,3段階のベンチマークデータセットを構築した。
我々は,最近のXAI手法と異なるGNNアルゴリズムを組み合わせることで,薬物発見のメリット,限界,今後の可能性を明らかにする。
論文 参考訳(メタデータ) (2021-07-01T04:49:29Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
マルコフ論理ネットワーク(MLN)は、多くの知識グラフ問題に対処するために用いられる。
MLNの推論は計算集約的であり、MLNの産業規模での応用は非常に困難である。
本稿では,表現力とモデルの単純さとのバランスのよいグラフニューラルネット(GNN)モデルであるExpressGNNを提案する。
論文 参考訳(メタデータ) (2020-01-29T23:34:36Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
グラフニューラルネットワーク(GNN)は近年,多くの関心を集めている。
本稿では,芸術空間のGNNの状態によって実行される操作をよりよく可視化するために,いくつかの理論ツールを利用する。
私たちはNode Maskingというシンプルなコンセプトを導入しました。
論文 参考訳(メタデータ) (2020-01-17T06:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。