論文の概要: Measuring Competency of Machine Learning Systems and Enforcing
Reliability
- arxiv url: http://arxiv.org/abs/2212.01415v1
- Date: Fri, 2 Dec 2022 19:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:00:53.676903
- Title: Measuring Competency of Machine Learning Systems and Enforcing
Reliability
- Title(参考訳): 機械学習システムの能力測定と信頼性の強化
- Authors: M. Planer, J. M. Sierchio, for BAE Systems
- Abstract要約: 機械学習エージェントの能力に及ぼす環境条件の影響について検討する。
機械学習エージェントの戦略と性能に影響を与える条件の表現を学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We explore the impact of environmental conditions on the competency of
machine learning agents and how real-time competency assessments improve the
reliability of ML agents. We learn a representation of conditions which impact
the strategies and performance of the ML agent enabling determination of
actions the agent can make to maintain operator expectations in the case of a
convolutional neural network that leverages visual imagery to aid in the
obstacle avoidance task of a simulated self-driving vehicle.
- Abstract(参考訳): 機械学習エージェントの能力に及ぼす環境条件の影響とリアルタイム能力評価がMLエージェントの信頼性に与える影響について検討する。
本研究では、視覚画像を利用した畳み込みニューラルネットワークにおいて、エージェントがオペレーターに期待できる行動の判断を可能にするmlエージェントの戦略や性能に影響を与える条件の表現を学習し、シミュレーションされた自動運転車の障害物回避タスクを支援する。
関連論文リスト
- Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving [17.27549891731047]
我々は,強化学習を用いた行動モデルのクローズドループ微調整によりエージェント動作の信頼性を向上させる。
本手法は,衝突速度などの目標値の改善とともに,全体的な性能の向上を示す。
シミュレーションエージェントが自律走行車プランナーの質を計測する能力を直接評価するための新しいポリシー評価ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-26T23:40:33Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Neurosymbolic Meta-Reinforcement Lookahead Learning Achieves Safe
Self-Driving in Non-Stationary Environments [17.39580032857777]
本研究では,emphNeurosymbolic Meta-Reinforcement Lookahead Learning(NUMERLA)に基づくルックアヘッドシンボリック制約を用いたオンラインメタ強化学習アルゴリズムを提案する。
実験により、NUMERLAはリアルタイム適応能力を持つ自動運転エージェントを推定し、非定常都市での人間と車両の相互作用シナリオ下での安全かつ自己適応運転を実現する。
論文 参考訳(メタデータ) (2023-09-05T15:47:40Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
安全マージンを生成するためにプロキシ臨界度メトリクスをどのように活用するかを示す。
Atari 環境での APE-X と A3C からの学習方針に対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-07-25T16:49:54Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - On Assessing The Safety of Reinforcement Learning algorithms Using
Formal Methods [6.2822673562306655]
敵の訓練、敵の検知、堅牢な学習といった安全メカニズムは、エージェントが配備されるすべての障害に常に適応するとは限らない。
したがって,エージェントが直面する学習課題に適応した新しいソリューションを提案する必要がある。
我々は、対向的摂動に直面した際のエージェントのポリシーを改善するために、報酬形成とQ-ラーニングアルゴリズムを防御機構として使用する。
論文 参考訳(メタデータ) (2021-11-08T23:08:34Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
本稿では,自律運転アプリケーションにおける交通信号検知器の精度とロバスト性を評価・理解・改善する視覚分析システム,VATLDを提案する。
歪んだ表現学習は、人間に親しみやすい視覚的要約で人間の認知を強化するために、データ意味を抽出する。
また、視覚分析システムであるVATLDによる様々な性能改善戦略の有効性を実証し、自律運転における安全クリティカルな応用の実践的意義を示す。
論文 参考訳(メタデータ) (2020-09-27T22:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。