論文の概要: On the Definition of Robustness and Resilience of AI Agents for Real-time Congestion Management
- arxiv url: http://arxiv.org/abs/2504.13314v1
- Date: Thu, 17 Apr 2025 20:01:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:16:27.299278
- Title: On the Definition of Robustness and Resilience of AI Agents for Real-time Congestion Management
- Title(参考訳): リアルタイム混雑管理のためのAIエージェントのロバスト性とレジリエンスの定義について
- Authors: Timothy Tjhay, Ricardo J. Bessa, Jose Paulos,
- Abstract要約: 欧州連合の人工知能(AI)法は、リスクの高いセクターに対する堅牢性、レジリエンス、およびセキュリティ要件を定義している。
本稿では,混雑管理における強化学習エージェントの堅牢性とレジリエンスを定量的に評価するための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The European Union's Artificial Intelligence (AI) Act defines robustness, resilience, and security requirements for high-risk sectors but lacks detailed methodologies for assessment. This paper introduces a novel framework for quantitatively evaluating the robustness and resilience of reinforcement learning agents in congestion management. Using the AI-friendly digital environment Grid2Op, perturbation agents simulate natural and adversarial disruptions by perturbing the input of AI systems without altering the actual state of the environment, enabling the assessment of AI performance under various scenarios. Robustness is measured through stability and reward impact metrics, while resilience quantifies recovery from performance degradation. The results demonstrate the framework's effectiveness in identifying vulnerabilities and improving AI robustness and resilience for critical applications.
- Abstract(参考訳): 欧州連合の人工知能(AI)法は、リスクの高いセクターに対する堅牢性、レジリエンス、セキュリティ要件を定義しているが、評価のための詳細な方法論は欠如している。
本稿では,混雑管理における強化学習エージェントの堅牢性とレジリエンスを定量的に評価するための新しい枠組みを提案する。
AIフレンドリーなデジタル環境であるGrid2Opを使用することで、摂動エージェントは、環境の実際の状態を変更せずにAIシステムの入力を摂動することで、自然および敵対的な破壊をシミュレートし、さまざまなシナリオにおけるAIパフォーマンスの評価を可能にする。
ロバストネスは安定性と報奨影響メトリクスによって測定され、レジリエンスはパフォーマンス劣化からの回復を定量化します。
この結果は、脆弱性を特定し、重要なアプリケーションに対するAIの堅牢性とレジリエンスを改善するためのフレームワークの有効性を示している。
関連論文リスト
- LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection [0.0]
脆弱性検出のための大規模言語モデル(LLM)には、ユニークな課題がある。
脆弱性検出に機械学習モデルを使用した以前の試みは、効果がないことが証明されている。
我々は、これらの制限を緩和することに焦点を当てた、堅牢なAI駆動アプローチを提案する。
論文 参考訳(メタデータ) (2025-04-25T15:30:40Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
本稿では,安定したデータのみを用いて,スマートグリッドの不安定性を検出する新しいフレームワークを提案する。
ジェネレータはGAN(Generative Adversarial Network)に依存しており、ジェネレータは不安定なデータを生成するために訓練される。
我々の解は、実世界の安定と不安定なサンプルからなるデータセットでテストされ、格子安定性の予測において最大97.5%、敵攻撃の検出において最大98.9%の精度を達成する。
論文 参考訳(メタデータ) (2025-01-27T20:48:25Z) - Cooperative Resilience in Artificial Intelligence Multiagent Systems [2.0608564715600273]
本稿では, 協調レジリエンスの明確な定義とその定量化手法を提案する。
その結果は、集団システムが破壊に直面してどのように準備し、抵抗し、回復し、幸福を維持し、変革するかを分析する上で、レジリエンス指標の重要な役割を強調している。
論文 参考訳(メタデータ) (2024-09-20T03:28:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Investigating Robustness in Cyber-Physical Systems: Specification-Centric Analysis in the face of System Deviations [8.8690305802668]
サイバー物理システム(CPS)の重要属性は堅牢性であり、安全に運用する能力を示している。
本稿では,特定のシステム要件を満たす上でのコントローラの有効性を特徴付ける,仕様に基づく新しいロバスト性を提案する。
本稿では, 微妙な堅牢性違反を識別するための2層シミュレーションに基づく解析フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-13T16:44:43Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
アスペクトベースの感情分析(ABSA)は、ソーシャルメディアのテキストやレビューの背後にある製品やサービスの特定の側面に対して、特定の感情の極性を自動的に推測することを目的としている。
我々は、モデル、データ、トレーニングを含むあらゆる可能な角度からボトルネックを体系的に再考することで、ABSAの堅牢性を高めることを提案する。
論文 参考訳(メタデータ) (2023-04-19T11:07:43Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。