Measuring Competency of Machine Learning Systems and Enforcing
Reliability
- URL: http://arxiv.org/abs/2212.01415v1
- Date: Fri, 2 Dec 2022 19:37:37 GMT
- Title: Measuring Competency of Machine Learning Systems and Enforcing
Reliability
- Authors: M. Planer, J. M. Sierchio, for BAE Systems
- Abstract summary: We explore the impact of environmental conditions on the competency of machine learning agents.
We learn a representation of conditions which impact the strategies and performance of the ML agent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We explore the impact of environmental conditions on the competency of
machine learning agents and how real-time competency assessments improve the
reliability of ML agents. We learn a representation of conditions which impact
the strategies and performance of the ML agent enabling determination of
actions the agent can make to maintain operator expectations in the case of a
convolutional neural network that leverages visual imagery to aid in the
obstacle avoidance task of a simulated self-driving vehicle.
Related papers
- Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving [17.27549891731047]
We improve the reliability of agent behaviors by closed-loop fine-tuning of behavior models with reinforcement learning.
Our method demonstrates improved overall performance, as well as improved targeted metrics such as collision rate.
We present a novel policy evaluation benchmark to directly assess the ability of simulated agents to measure the quality of autonomous vehicle planners.
arXiv Detail & Related papers (2024-09-26T23:40:33Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Neurosymbolic Meta-Reinforcement Lookahead Learning Achieves Safe
Self-Driving in Non-Stationary Environments [17.39580032857777]
This study introduces an algorithm for online meta-reinforcement learning, employing lookahead symbolic constraints based on emphNeurosymbolic Meta-Reinforcement Lookahead Learning (NUMERLA)
Experimental results demonstrate NUMERLA confers the self-driving agent with the capacity for real-time adaptability, leading to safe and self-adaptive driving under non-stationary urban human-vehicle interaction scenarios.
arXiv Detail & Related papers (2023-09-05T15:47:40Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - On Assessing The Safety of Reinforcement Learning algorithms Using
Formal Methods [6.2822673562306655]
Safety mechanisms such as adversarial training, adversarial detection, and robust learning are not always adapted to all disturbances in which the agent is deployed.
It is therefore necessary to propose new solutions adapted to the learning challenges faced by the agent.
We use reward shaping and a modified Q-learning algorithm as defense mechanisms to improve the agent's policy when facing adversarial perturbations.
arXiv Detail & Related papers (2021-11-08T23:08:34Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.