論文の概要: Linguistic Constructs as the Representation of the Domain Model in an
Intelligent Language Tutoring System
- arxiv url: http://arxiv.org/abs/2212.01711v1
- Date: Sat, 3 Dec 2022 23:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 16:41:39.136914
- Title: Linguistic Constructs as the Representation of the Domain Model in an
Intelligent Language Tutoring System
- Title(参考訳): 知的言語学習システムにおけるドメインモデルの表現としての言語構成
- Authors: Anisia Katinskaia, Jue Hou, Anh-Duc Vu, Roman Yangarber
- Abstract要約: 本稿では,AIを用いた言語学習プラットフォームRevitaの開発について述べる。
これは、低中間語から上級レベルまで、複数の言語の学習者をサポートするために開発された、無償で利用可能なインテリジェントなオンラインチューターである。
Revitaの主な特徴の1つは、ドメイン知識の表現としての言語構造体系の導入である。
- 参考スコア(独自算出の注目度): 0.6576173998482648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the development of an AI-based language learning platform
Revita. It is a freely available intelligent online tutor, developed to support
learners of multiple languages, from low-intermediate to advanced levels. It
has been in pilot use by hundreds of students at several universities, whose
feedback and needs are shaping the development. One of the main emerging
features of Revita is the introduction of a system of linguistic constructs as
the representation of domain knowledge. The system of constructs is developed
in close collaboration with experts in language teaching. Constructs define the
types of exercises, the content of the feedback, and enable the detailed
modeling and evaluation of learning progress.
- Abstract(参考訳): 本稿では,AIを用いた言語学習プラットフォームRevitaの開発について述べる。
低中間レベルから上級レベルまで、複数の言語の学習者をサポートするために開発された。
いくつかの大学の何百人もの学生がパイロットで利用しており、フィードバックとニーズが開発を形作っている。
Revitaの主な特徴の1つは、ドメイン知識の表現としての言語構造体系の導入である。
構成体系は言語教育の専門家と緊密に連携して開発されている。
構成は、エクササイズの種類、フィードバックの内容を定義し、学習進捗の詳細なモデリングと評価を可能にする。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - SUTRA: Scalable Multilingual Language Model Architecture [5.771289785515227]
我々は50以上の言語でテキストの理解、推論、生成が可能な多言語大言語モデルアーキテクチャSUTRAを紹介する。
広範な評価により、SUTRA は GPT-3.5 や Llama2 といった既存のモデルを 20-30% 上回って、主要なMultitask Language Understanding (MMLU) ベンチマークを上回ります。
以上の結果から,SUTRAは多言語モデル機能において重要なギャップを埋めるだけでなく,AIアプリケーションにおける運用効率とスケーラビリティの新たなベンチマークを確立することが示唆された。
論文 参考訳(メタデータ) (2024-05-07T20:11:44Z) - Scaffolding Language Learning via Multi-modal Tutoring Systems with Pedagogical Instructions [34.760230622675365]
知的家庭教師システム(ITS)は、人間の家庭教師を模倣し、学習者にカスタマイズされた指導やフィードバックを提供することを目的としている。
生成人工知能の出現に伴い、大規模言語モデル(LLM)は、複雑な会話の相互作用をシステムに付与する。
教育指導がITSの足場形成をいかに促進するかを,子どもに言語学習のための画像記述を指導するケーススタディにより検討した。
論文 参考訳(メタデータ) (2024-04-04T13:22:28Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Engineering A Large Language Model From Scratch [0.0]
AtinukeはTransformerベースのニューラルネットワークで、さまざまな言語タスクのパフォーマンスを最適化する。
特徴を抽出し、複雑なマッピングを学習することで、人間のような言語をエミュレートすることができる。
システムは、解釈可能で堅牢なまま、自然言語タスクの最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-01-30T04:29:48Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Language-Driven Representation Learning for Robotics [115.93273609767145]
ロボット工学における視覚表現学習の最近の研究は、日々の作業を行う人間の大規模なビデオデータセットから学ぶことの可能性を実証している。
人間のビデオやキャプションから言語による表現学習を行うためのフレームワークを提案する。
我々は、Voltronの言語駆動学習が、特に高レベル制御を必要とするターゲット問題において、先行技術よりも優れていることを発見した。
論文 参考訳(メタデータ) (2023-02-24T17:29:31Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
教師付きディープラーニングベースのアプローチはタスク指向のダイアログに適用され、限られたドメインや言語アプリケーションに有効であることが証明されている。
実際には、これらのアプローチはドメイン駆動設計とアンダーリソース言語の欠点に悩まされている。
本稿では,原型ニューラルネットワークと多言語トランスフォーマーモデルを用いた相乗的少数ショット学習の言語間変換可能性について検討する。
論文 参考訳(メタデータ) (2022-07-19T09:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。